已知函数
(1)若函数在点处的切线与圆相切,求的值;
(2)当时,函数的图像恒在坐标轴轴的上方,试求出的取值范围.
(1);(2).
解析试题分析:本题综合考查函数与导数及运用导数研究函数的单调区间、最值等数学知识和方法,突出考查综合运用数学知识和方法分析问题、解决问题的能力,考查函数思想、分类讨论思想.第一问,先将代入中,得到切点的纵坐标,对求导,将代入得到切线的斜率,所以点斜式写出切线方程,因为它与圆相切,所以圆心到切线的距离等于半径,列出表达式,求出;第二问,对求导,通过分析可转化为当时,恒成立,设,讨论,讨论的正负,通过抛物线的性质,求最小值.
试题解析:(1) ,而,故,
所以在点处的切线方程为,即,
由,配方得,故该圆的圆心为,半径,
由题意可知,圆与直线相切,所以,
即,解得. (4分)
(2)函数的定义域为,,
由题意,只需当时,恒成立. (5分)
设,,
当时,,当时,恒成立,即恒成立,
故在上是增函数,∴当时,,(7分)
当时,函数的对称轴,则在上是增函数,
当时,,∴,∴在上是增函数,
∴当时,, (9分)
当时,函数的对称轴,在是减函数,,
故,∴在是减函数,
∴当时,与当时,矛盾,(11分)
综上所述,的取值范围是.
考点:1.利用导数求切线的方程;2.点到直线的距离公式;3.利用导数求函数最值.
科目:高中数学 来源: 题型:解答题
已知函数,在上的减函数.
(Ⅰ)求曲线在点(1,f(1))处的切线方程;
(Ⅱ)若在上恒成立,求的取值范围;
(Ⅲ)关于的方程()有两个根(无理数e=2.71828),求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,,
(Ⅰ)若,求函数的极值;
(Ⅱ)若函数在上单调递减,求实数的取值范围;
(Ⅲ)在函数的图象上是否存在不同的两点,使线段的中点的横坐标与直线的斜率之间满足?若存在,求出;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,其中,为参数,且.
(1)当时,判断函数是否有极值;
(2)要使函数的极小值大于零,求参数的取值范围;
(3)若对(2)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中,为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求的值;
(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数点)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com