精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前5项和为105,且a20=2a5
(Ⅰ)求数列{an}的通项公式;   
(Ⅱ)记bn=
an2n-1
7
.求数列{bn}的前n项和Sn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)根据等差数列的通项公式、前n项和公式,由题意列出关于首项和公差的方程组,求出首项和公差,再代入通项公式化简即可;
(Ⅱ)根据(I)和条件求出bn,利用错位相减法求数列{bn}的前n项和Sn
解答: 解:(Ⅰ)设等差数列{an}的公差是d,
因为前5项和为105,且a20=2a5
所以
5a1+
5×4
2
×d=105
a1+19d=2(a1+4d)
,解得
a1=
21×11
13
d=
21
13

则an=
21×11
13
+(n-1)×
21
13
=
21
13
(n+1);
(Ⅱ)由(Ⅰ)得,bn=
an2n-1
7
=
3
13
(n+1)•2n-1
所以Sn=
3
13
[2•20+3•2+4•22+…+(n+1)•2n-1],①
2Sn=
3
13
[2•2+3•22+4•23+…+(n+1)•2n],②
①-②得,-Sn=
3
13
[2+2+22+…+2n-1-(n+1)•2n]
=
3
13
[2+
2(1-2n-1)
1-2
-(n+1)•2n]=-
3n
13
2n

所以Sn=
3n
13
2n
点评:本题考查了等差数列的通项公式、前n项和公式,以及错位相减法求数列的前n项和,考查了学生化简计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+x,若对任意x1,x2∈R恒有f(
x1+x2
2
)≤
f(
x
 
1
)+f(
x
 
2
)
2
成立,则实数a的取值范围是(  )
A、a≥0B、a>0
C、a≤0D、a<0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=ln(cosx),x∈(-
π
2
π
2
)的图象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点M到点F(
3
,0
)的距离与到直线x=
4
3
的距离之比为定值
3
2
,记M的轨迹为C.
(1)求C的方程,并画出C的简图;
(2)点P是圆x2+y2=1上第一象限内的任意一点,过P作圆的切线交轨迹C于R,Q两点.
(i)证明:|PQ|+|FQ|=2;
(ii)求RQ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:当0<x<
π
2
时,sinx<x<tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD的底面是边长为2的正方形,PC=2,PC⊥BC,异面直线AB与PC所成的角为60°.
(1)求PA的长;
(2)求三棱锥P-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x3+tx2+x,g(x)=x2+tx+t+3,其中t∈R.已知函数g(x)有两个零点x1,x2,且0≤x1<1时,实数t的取值集合记为M.
(Ⅰ)求集合M;
(Ⅱ)f(x1)+f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,平面ABC⊥平面BCD,AB⊥AC,DC⊥BC,求证:平面ABD⊥平面ACD.

查看答案和解析>>

科目:高中数学 来源: 题型:

求已知函数f(x)=(ax+1)ex的单调区间.

查看答案和解析>>

同步练习册答案