精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+x,若对任意x1,x2∈R恒有f(
x1+x2
2
)≤
f(
x
 
1
)+f(
x
 
2
)
2
成立,则实数a的取值范围是(  )
A、a≥0B、a>0
C、a≤0D、a<0
考点:二次函数的性质
专题:函数的性质及应用
分析:将x=
x1+x2
2
,x=x1,x=x2代入不等式,整理得;a(x1-x22≥0,从而求出a的范围;
解答: 解:由f(
x1+x2
2
)≤
f(
x
 
1
)+f(
x
 
2
)
2
恒成立,得:
a(x1+x2)2
2
+(x1+x2)≤ax12+x1+ax22+x2
整理得:a(x1-x22≥0,
∴a≥0;
又由函数f(x)=ax2+x为二次函数,a≠0,
可得实数a的取值范围是a>0,
故选:B
点评:本题考查的知识点是二次函数的图象和性质,本题考查的实质是函数的凸凹性,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

到A(2,-3)和B(4,-1)的距离相等的点的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=53,b=52,c=54,则a,b,c三者的大小关系是(  )
A、b>a>c
B、c>a>b
C、a>b>c
D、b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系O-xyz中,若A(1,
3
,2)关于y轴的对称点为A1,则线段AA1的长度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x2-3x,x>0
a
ex
,x<0
的图象上存在两点关于y轴对称,则实数a的取值范围是(  )
A、[-3,1]
B、(-3,1)
C、[-
e
,9e2]
D、[-e-
1
2
,9e-3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x-1)=x2,则f(2x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|(x+5)(x-2)≥0},集合N={x||2x-1|<7},求M∩N和M∪N.

查看答案和解析>>

科目:高中数学 来源: 题型:

式子log327的值为(  )
A、9B、18C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前5项和为105,且a20=2a5
(Ⅰ)求数列{an}的通项公式;   
(Ⅱ)记bn=
an2n-1
7
.求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案