精英家教网 > 高中数学 > 题目详情
3.如图,双曲线y=$\frac{2}{x}$(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则四边形OABC的面积是2.

分析 延长BC,交x轴于点D,设点C(x,y),AB=a,由角平分线的性质得,CD=CB′,则△OCD≌△OCB′,再由翻折的性质得,BC=B′C,根据反比例函数的性质,可得出S△OCD=$\frac{1}{2}$xy,则S△OCB′=$\frac{1}{2}$xy,由AB∥x轴,得点A(x-a,2y),由题意得2y(x-a)=2,从而得出三角形ABC的面积等于$\frac{1}{2}$ay,即可得出答案.

解答 解:延长BC,交x轴于点D,
设点C(x,y),AB=a,
∵OC平分OA与x轴正半轴的夹角,
∴CD=CB′,△OCD≌△OCB′,
再由翻折的性质得,BC=B′C,
∵双曲线y=$\frac{2}{x}$(x>0)经过四边形OABC的顶点A、C,
∴S△OCD=$\frac{1}{2}$xy=1,
∴S△OCB′=$\frac{1}{2}$xy=1,
由翻折变换的性质和角平分线上的点到角的两边的距离相等可得BC=B′C=CD,
∴点A、B的纵坐标都是2y,
∵AB∥x轴,
∴点A(x-a,2y),
∴2y(x-a)=2,
∴xy-ay=1,
∵xy=2
∴ay=1,
∴S△ABC=$\frac{1}{2}$ay=$\frac{1}{2}$,
∴SOABC=S△OCB′+S△AB'C+S△ABC=1+$\frac{1}{2}$+$\frac{1}{2}$=2.
故答案为:2.

点评 本题是一道反比例函数的综合题,考查了翻折的性质、反比例函数的性质以及角平分线的性质,难度偏大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.P为平面ABCD外一点,E∈PB,F∈AC,且$\frac{PE}{EB}$=$\frac{CF}{FA}$,求证:EF∥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.使平面α∥平面β的一个条件是(  )
A.存在一条直线a,a∥α,a∥β
B.存在一条直线a,a?α,a∥β
C.存在两条平行直线a、b,a?α,b?β,a∥β,b∥α
D.存在两条异面直线a、b,a?α,b?β,a∥β,b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=kx+b的图象与x,y轴分别相交于点A、B,$\overrightarrow{AB}$=(2,2),函数g(x)=x2-x-6.
(1)求k,b的值;
(2)当x满足f(x)>g(x)时,求函数$\frac{g(x)+1}{f(x)}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图是教材选修1-2中《推理与证明》一章的知识结构图,请把A处填入适当的方法综合法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设i是虚数单位,则复数$\frac{2i}{1-i}$的共轭复数的模是(  )
A.1B.-1C.$\sqrt{2}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设x,y满足约束条件$\left\{\begin{array}{l}{2x-3y+6≥0}\\{x-1≤y}\\{x≥0}\\{y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为8,则$\frac{2}{a}$+$\frac{4}{b}$的最小值为$\frac{49}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i是虚数单位.若复数z满足(1-i)•z=2i3,则复数z=(  )
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xlnx.
(1)求f(x)在(e,f(e))处切线方程;
(2)求f(x)最小值;
(3)设F(x)=ax2+f′(x)(a≠0),讨论函数F(x)的单调性.

查看答案和解析>>

同步练习册答案