精英家教网 > 高中数学 > 题目详情
12.已知i是虚数单位.若复数z满足(1-i)•z=2i3,则复数z=(  )
A.1+iB.1-iC.-1+iD.-1-i

分析 把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.

解答 解:∵(1-i)•z=2i3
∴$z=\frac{2{i}^{3}}{1-i}=\frac{-2i}{1-i}=\frac{-2i(1+i)}{(1-i)(1+i)}=\frac{2-2i}{2}=1-i$.
故选:B.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.两条异面直线在同一平面内的射影不可能是(  )
A.两条相交直线
B.两条平行直线
C.一条直线和不在这条直线上的一个点
D.两个点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,双曲线y=$\frac{2}{x}$(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则四边形OABC的面积是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=x2+2x-$\frac{{2}^{x}-4}{3}$的零点个数为(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将函数y=cos2x的图象向左平移$\frac{π}{4}$个单位,得到函数y=f(x)•cosx的图象,则f(x)的表达式可以是(  )
A.f(x)=-2sinxB.f(x)=2sinx
C.f(x)=$\frac{\sqrt{2}}{2}$sin2xD.f(x)=$\frac{\sqrt{2}}{2}$(sin2x+cos2x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\frac{x}{{e}^{cosx}}$(-π≤x≤π)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|0≤x-m≤3},B={x|<0或x>3},试分别求出满足下列条件的实m的取值范围.
(Ⅰ)A∩B=Φ;
(Ⅱ)A∪B=B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.解不等式|2x-1|+|x+1|<3的解集为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某地区有100户农民,都从事水产养殖.据了解,平均每户的年收入为3万元.为了调整产业结构,当地政府决定动员部分农民从事水产加工.据估计,如果能动员x(x>0)户农民从事水产加工,那么剩下的继续从事水产养殖的农民平均每户的年收入有望提高2x%,而从事水产加工的农民平均每户的年收入将为$3(a-\frac{3x}{50})(a>0)$万元.
(1)在动员x户农民从事水产加工后,要使从事水产养殖的农民的总年收入不低于动员前从事水产养殖的农民的总年收入,求x的取值范围;
(2)若0<x≤25,要使这100户农民中从事水产加工的农民的总年收入始终不高于从事水产养殖的农民的总年收入,求a的最大值.

查看答案和解析>>

同步练习册答案