精英家教网 > 高中数学 > 题目详情
1.如图所示,在平面四边形ABCD中,AB⊥AD,∠ADC=$\frac{2π}{3}$,E为AD边上一点,CE=$\sqrt{7}$,DE=1,AE=2,∠BEC=$\frac{π}{3}$.
(Ⅰ)求sin∠CED的值;
(Ⅱ)求BE的长.

分析 (1)在△CDE中,使用余弦定理解出CD,再利用正弦定理求出sin∠CED;
(2)利用诱导公式与和角公式求出sin∠AEB,再在Rt△ABE中解出BE.

解答 解:(1)在△CDE中,由余弦定理得CE2=DE2+CD2-2DE•CDcos$\frac{2π}{3}$,即7=1+CD2+CD,解得CD=2.
由正弦定理得$\frac{CD}{sin∠CED}=\frac{CE}{sin∠CDE}$,即$\frac{2}{sin∠CED}=\frac{\sqrt{7}}{\frac{\sqrt{3}}{2}}$,解得sin∠CED=$\frac{\sqrt{21}}{7}$.
(2)∵sin∠CED=$\frac{\sqrt{21}}{7}$,∴cos∠CED=$\frac{2\sqrt{7}}{7}$.
∴sin∠AEB=sin(∠CED+60°)=$\frac{\sqrt{21}}{7}×\frac{1}{2}$+$\frac{2\sqrt{7}}{7}×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{21}}{14}$.∴cos∠AEB=$\frac{\sqrt{7}}{14}$.
∵cos∠AEB=$\frac{AE}{BE}$,∴BE=$\frac{AE}{sin∠AEB}$=4$\sqrt{7}$.

点评 本题考查了正余弦定理在解三角形中的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设$\overrightarrow{a}$=3$\overrightarrow{i}$-$\overrightarrow{j}$-2$\overrightarrow{k}$,$\overrightarrow{b}$=$\overrightarrow{i}$+2$\overrightarrow{j}$-$\overrightarrow{k}$,求:
(1)$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)cos<$\overrightarrow{a}$,$\overrightarrow{b}$>;
(3)(2$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+2$\overrightarrow{b}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.分别抽取甲、乙两名同学本学期同科目各类考试的6张试卷,并将两人考试中失分情况记录如下:
甲:18、19、21、22、5、11
乙:9、7、23、25、19、13
(1)用茎叶图表示甲乙两人考试失分数据;
(2)从失分数据可认否判断甲乙两人谁的考试表现更好?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.抛物线y=$\frac{1}{8}$x2上一点M到焦点的距离为4,则点M的纵坐标为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数g(x)=$\left\{\begin{array}{l}{0,x=0}\\{lo{g}_{2}|x|,x≠0}\end{array}\right.$,f(x)=x2-2x,若关于x的方程f(g(x))-a=0有四个不同的实数解,则实数a的取值范围是(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在如图所示的程序框图中,当输出的T的值最大时,正整数k的值等于(  )
A.6B.7C.6或7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知O为坐标原点,焦点为F的抛物线E:x2=2py(p>0)上不同两点A、B均在第一象限.B点关于y轴的对称点为C,△OFA的外接圆圆心为Q,且$\overrightarrow{OQ}$•$\overrightarrow{OF}$=$\frac{1}{32}$
(1)求抛物线E的标准方程;
(2)两不同点A、B均在第一象限内,B点关于y轴的对称点为C,设直线OA、OB的倾角分别为α、β,且α+β=$\frac{π}{2}$
①证明:直线AC过定点;
②若A、B、C三点的横坐标依次成等差数列,求△ABC的外接圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)对一切实数x、y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.
(1)求f(0)的值;
(2)在(0,4)上存在实数x0,使得f(x0)+6=ax0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.方程2x2-xy=3x表示的曲线是两条直线.

查看答案和解析>>

同步练习册答案