精英家教网 > 高中数学 > 题目详情
已知椭圆C:x2+2y2=4,
(1)求椭圆C的离心率
(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.
考点:圆与圆锥曲线的综合,椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;
(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到
OA
OB
=0
,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB与圆x2+y2=2相切.
解答: 解:(1)由x2+2y2=4,得椭圆C的标准方程为
x2
4
+
y2
2
=1

∴a2=4,b2=2,从而c2=a2-b2=2.
因此a=2,c=
2

故椭圆C的离心率e=
c
a
=
2
2

(2)直线AB与圆x2+y2=2相切.
证明如下:
设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.
∵OA⊥OB,
OA
OB
=0
,即tx0+2y0=0,解得t=-
2y0
x0

当x0=t时,y0=-
t2
2
,代入椭圆C的方程,得t=±
2

故直线AB的方程为x=±
2
,圆心O到直线AB的距离d=
2

此时直线AB与圆x2+y2=2相切.
当x0≠t时,直线AB的方程为y-2=
y0-2
x0-t
(x-t)

即(y0-2)x-(x0-t)y+2x0-ty0=0.
圆心O到直线AB的距离d=
|2x0-ty0|
(y0-2)2+(x0-t)2

x02+2y02=4,t=-
2y0
x0

d=
|2x0+
2y02
x0
|
x02+y02+
4y02
x02
+4
=
|
4+x02
x0
|
x04+8x02+16
2x02
=
2

此时直线AB与圆x2+y2=2相切.
点评:本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中,∠ABC=90°,若BD⊥AC且BD交AC于点D,丨
BD
丨=
3
,则
BD
BC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点集P={(x,y)|x,y∈{1,2,3}},从集合P中任取一点,纵横坐标和为偶数的概率是(  )
A、
1
2
B、
1
3
C、
4
9
D、
5
9

查看答案和解析>>

科目:高中数学 来源: 题型:

某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为(  )
(锥体体积公式:V=
1
3
Sh,其中S为底面面积,h为高)
A、3
B、2
C、
3
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(Ⅰ)求选出的3名同学是来自互不相同学院的概率;
(Ⅱ)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.
(Ⅰ)求同一工作日至少3人需使用设备的概率;
(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
作物产量(kg)300500
概率0.50.5
作物市场价格(元/kg)610
概率0.40.6
(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线E:
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线分别为l1:y=2x,l2:y=-2x.
(1)求双曲线E的离心率;
(2)如图,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、第四象限),且△OAB的面积恒为8,试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为
 

查看答案和解析>>

同步练习册答案