精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,ABCD是平行四边形,M,N,Q分别PB,PC,AB的中点.
求证:(1)MN平面PAD;
(2)QN平面PAD.
证明:(1)∵M、N分别是PB、PC的中点,
∴MNBC,(2分)

又∵ADBC,∴MNAD,(4分)
又∵AD?平面PAD,
∴MN平面PAD;(6分)
(2)连接MQ,如下图所示:

∵M、Q分别是PB、AB的中点,
∴MQPA,(8分)
又∵MN∩MQ=M,
∴平面MNQ平面PAD,(10分)
又∵QN?平面MNQ,
∴QN平面PAD;(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知棱长为a的实心正四面体模型的一条棱AB在桌面α内,设点P是模型表面上任意一点,记P到桌面α的距离的最大值为h,则h的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AB1⊥BC1,AB=CC1=1,BC=2.
(1)求证:A1C1⊥AB;
(2)求点B1到平面ABC1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中,与对角线AC1异面的棱有(  )条
A.8B.6C.4D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正三棱柱ABC-A1B1C1中,E是BC的中点,D是AA1上的一个动点,且
AD
DA1
=m
,若AE平面DB1C,则m的值等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD,
PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正切值;
(Ⅲ)求二面角P-EC-D的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图(1)所示,在直角梯形ABCP中,BCAP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(图(2)).
(1)求证:AP平面EFG;
(2)若点Q是线段PB的中点,求证:PC⊥平面ADQ;
(3)求三棱锥C-EFG的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,面SAB⊥矩形ABCD所在的平面,△SAB是正三角形,F、E分别是SD,BC的中点.
(1)求证:EF平面SAB;
(2)求证:EF⊥AD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知ABCD-A1B1C1D1是底面为正方形的长方体,∠AD1A1=60°,AD1=4,P为AD1的中点,(1)求证:直线C1P平面AB1C;(2)求异面直线AA1与B1P所成角的余弦值.

查看答案和解析>>

同步练习册答案