精英家教网 > 高中数学 > 题目详情
已知棱长为a的实心正四面体模型的一条棱AB在桌面α内,设点P是模型表面上任意一点,记P到桌面α的距离的最大值为h,则h的取值范围是______.
∵棱长为a的实心正四面体模型的一条棱AB在桌面α内,
若CD棱与平面α平行,则P到桌面α的距离的最大值h取最小值
此时h等于AB和CD两条异面直线之间的距离
2
2
a

当正四面体ABCD的一个面与平面α重合时,
不妨令平面ABC与平面α重合
此时P到桌面α的距离的最大值h取最大值,
此时h等于D点到平面ABC的距离
6
3
a

故h的取值范围是[
2
2
a,
6
3
a]
故答案为:[
2
2
a,
6
3
a]
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

一个棱柱至少有_________个面,面数最少的棱柱有_________个顶点,有条_________棱.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,AA1=4,G为BB1的中点,则点G到平面A1BCD1的距离为(  )
A.2
2
B.2C.
2
D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体中ByD-中1B1y1D1中,∠中B中1=10°,中中1=1,则中中1与By1间的距离为(  )
A.2B.
3
C.
2
D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,平行六面体ANCD-EFGH中,棱AB,AD,AE的长分别为3,4,5,∠EAD=∠EAB=∠DAB=120°,则AG的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,正方体ABCD-A1B1C1D1的棱长为1,若E、F分别是BC、DD1中点,则B1到平面ABF的距离为(  )
A.
3
3
B.
5
5
C.
5
3
D.
2
5
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

长方体ABCD-A1B1C1D1,AB=2,AD=2,AA1=
6
,则点D到平面ACD1的距离是(  )
A.
1
2
B.
3
2
C.
6
2
D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在棱长为a的正方体A1B1C1D1-ABCD中,
(1)作出面A1BC1与面ABCD的交线l,判断l与直线A1C1位置关系,并给出证明;
(2)证明B1D⊥面A1BC1
(3)求直线AC到面A1BC1的距离;
(4)若以A为坐标原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴,建立空间直角坐标系,试写出C,C1两点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,ABCD是平行四边形,M,N,Q分别PB,PC,AB的中点.
求证:(1)MN平面PAD;
(2)QN平面PAD.

查看答案和解析>>

同步练习册答案