精英家教网 > 高中数学 > 题目详情

【题目】已知函数处的切线方程为

(Ⅰ)求函数的单调区间;

(Ⅱ)若为整数,当时, 恒成立,求的最大值(其中的导函数).

【答案】(Ⅰ)的单调区间递增区间为 ,递减区间为; (Ⅱ)整数的最大值为.

【解析】试题分析:Ⅰ)求出原函数的导函数,由f'(ln2)=1求导a值,再由f(ln2)=﹣ln2求得b值,代入原函数的导函数,再由导函数的符号与原函数单调性间的关系确定原函数的单调区间;

Ⅱ)将条件转化为,当时恒成立. 令,利用导数求最小值得答案.

试题解析:

(Ⅰ),由已知得,故,解得

,得,解得.

,所以

时, ;当时,

所以的单调区间递增区间为 ,递减区间为.

(Ⅱ)法一.由已知,及整理得

,当时恒成立

.

时,

由(Ⅰ)知上为增函数,

.

所以存在 使得,此时

时, ;当时,

所以.

故整数的最大值为.

法二.由已知,及整理得,

得, .

时,因为,所以 上为减函数,

.

为增函数。

为减函数。

由已知 .

上为增函数.

故整数的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|1﹣|
(1)求满足f(x)=2的x值;
(2)是否存在实数a,b,且0<a<b<1,使得函数y=f(x)在区间[a,b]上的值域为[a,2b],若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=af(x)﹣1(a>0且a≠1).
(Ⅰ)求k的值;
(Ⅱ)求g(x)在[﹣1,2]上的最大值;
(Ⅲ)当a=时,g(x)≤t2﹣2mt+1对所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:椭圆与双曲线有相同的焦点,它们在轴右侧有两个交点,满足.将直线左侧的椭圆部分(含 两点)记为曲线,直线右侧的双曲线部分(不含 两点)记为曲线.以为端点作一条射线,分别交于点,交于点(点在第一象限),设此时.

(1)求的方程;

(2)证明: ,并探索直线斜率之间的关系;

(3)设直线于点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正△ABC三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为圆柱的轴,CD为底面直径,E为底面圆周上一点,AB=1,CD=2,CE=DE.
求(1)三棱锥A﹣CDE的全面积;
(2)点D到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设为实数,函数, .

1)求的单调区间与极值;

2)求证:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2017年“双”,“双”购物狂欢节的来临,某青花瓷生产厂家计划每天生产汤碗、花瓶、茶杯这三种瓷器共个,生产一个汤碗需分钟,生产一个花瓶需分钟,生产一个茶杯需分钟,已知总生产时间不超过小时.若生产一个汤碗可获利润元,生产一个花瓶可获利润元,生产一个茶杯可获利润元.

(1)使用每天生产的汤碗个数与花瓶个数表示每天的利润(元);

(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修44:坐标系与参数方程

在直角坐标系中,已知直线l1 ),抛物线C t为参数).以原点为极点, 轴的非负半轴为极轴建立极坐标系.

(Ⅰ)求直线l1 和抛物线C的极坐标方程;

(Ⅱ)若直线l1 和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.

查看答案和解析>>

同步练习册答案