精英家教网 > 高中数学 > 题目详情
若r(x):sinx+cosx>m,s(x):x2+mx+1>0,如果对于?x∈R,r(x)为假命题且s(x)为真命题,则实数m的取值范围是
 
考点:复合命题的真假
专题:简易逻辑
分析:先求出命题r(x)与s(x)成立的等价条件,利用r(x)为假命题且s(x)为真命题.确定实数m的取值范围.
解答: 解:∵sinx+cosx=
2
sin(x+
π
4
)
≥-
2

∴要使sinx+cosx>m恒成立,则m<-
2

即:r(x):m<-
2

若x2+mx+1>0成立,则△=m2-4<0,
解得-2<m<2,
即s(x):-2<m<2.
∵r(x)为假命题,∴m≥-
2

∵s(x)为真命题,则
m≥-
2
-2<m<2
,解得-
2
≤m<2.
综上-
2
≤m<2.
故答案为:{m|-
2
≤m<2}.
点评:本题主要考查复合命题与简单命题之间的关系,利用函数的性质求出命题成立的等价条件是解决的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y=x2+2与双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线没有公共点,则双曲线离心率的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2=-4,则a4=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四面体PABC中,若E,F分别是PC,AB的中点,则异面直线PF与BE所成的角的余弦值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(2,1)且与直线x+2y-1=0平行的直线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
3
x3+ax
有三个单调区间,则a取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在三棱锥S-ABC中,△SBC、△ABC都是等边三角形,平面SBC⊥平面ABC,SA=6,则三棱锥体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=sinx,则f′(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在计算数列{2-n}前100项和的程序框图中,框内空白处应填入的计算语句是(  )
A、S←2-1+2-2+…+2-n
B、S←S+2-n
C、S←2-1+2-2+…+2-100
D、S←S+2-n-1

查看答案和解析>>

同步练习册答案