精英家教网 > 高中数学 > 题目详情
已知数列{an}是首项为1,公差为d的等差数列,数列{bn}是首项为1,公比为q(q>1)的等比数列.
(1)若a5=b5,q=3,求数列{an·bn}的前n项和;
(2)若存在正整数k(k≥2),使得ak=bk.试比较an与bn的大小,并说明理由..
(1)Sn(2)当1<n<k时,an<bn;当n>k时,an>bn;当n=1,k时,an=bn.
审题引导:①等差数列与等比数列对应项的积错位相减求和;②作差比较.
规范解答:解:(1)依题意,a5=b5=b1q5-1=1×34=81,故d==20,
所以an=1+20(n-1)=20n-19.(3分)
令Sn=1×1+21×3+41×32+…+(20n-19)·3n-1,①
则3Sn=1×3+21×32+…+(20n-39)·3n-1+(20n-19)·3n,②
①-②,得-2Sn=1+20×(3+32+…+3n-1)-(20n-19)·3n=1+20×-(20n-19)·3n=(29-20n)·3n-29,所以Sn.(7分)
(2)因为ak=bk,所以1+(k-1)d=qk-1,即d=
故an=1+(n-1).又bn=qn-1,(9分)所以bn-an=qn-1
[(k-1)(qn-1-1)-(n-1)(qk-1-1)]
[(k-1)(qn-2+qn-3+…+q+1)-(n-1)(qk-2+qk-3+…+q+1)].(11分)
(ⅰ)当1<n<k时,由q>1知
bn-an[(k-n)(qn-2+qn-3+…+q+1)-(n-1)(qk-2+qk-3+…+qn-1)]
[(k-n)(n-1)qn-2-(n-1)(k-n)qn-1]=-
<0;(13分)
(ⅱ)当n>k时,由q>1知
bn-an[(k-1)(qn-2+qn-3+…+qk-1)-(n-k)(qk-2+qk-3+…+q+1)]
[(k-1)(n-k)qk-1-(n-k)(k-1)qk-2]
=(q-1)2qk-2(n-k)
>0,(15分)
综上所述,当1<n<k时,an<bn;当n>k时,an>bn;当n=1,k时,an=bn.(16分)
(注:仅给出“1<n<k时,an<bn;n>k时,an>bn”得2分)
错因分析:错位相减时项数容易搞错,作差比较后学生不能灵活倒用等比数列求和公式1-qn=(1-q)(1+q+q2+…+qn-1)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设数列{an}的前n项和为Sn.已知a1=1,=an+1n2-n-,n∈N*.
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设同时满足条件:①≤bn+1(n∈N*);②bn≤M(n∈N*,M是与n无关的常数)的无穷数列{bn}叫“特界” 数列.
(1) 若数列{an}为等差数列,Sn是其前n项和,a3=4,S3=18,求Sn
(2) 判断(1)中的数列{Sn}是否为“特界” 数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a+b+c=________.
1
 
2
 
 
0.5
 
1
 
 
 
 
a
 
 
 
 
 
b
 
 
 
 
 
c

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知各项均为正数的数列{an}的前n项的乘积Tn(n∈N*),bn=log2an,则数列{bn}的前n项和Sn取最大时,n=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在数列{an}中,若a1=1,an+1=an+2(n≥1),则该数列的通项an=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设等差数列{an}的前n项和为Sn,已知a3=5,S3=9.
(1)求首项a1和公差d的值;
(2)若Sn=100,求n的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等比数列{an}的前n项和为Sn,若S1、S3、S2成等差数列,则{an}的公比等于(  )
A.1B.C.-D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在等比数列中,,则数列的通项公式_____________,设,则数列的前项和_____________.

查看答案和解析>>

同步练习册答案