精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{10})^{x},x≤10}\\{-lg(x+2),x>10}\end{array}\right.$,若f(8-m2)<f(2m),则实数m的取值范围是(  )
A.(-4,2)B.(-4,1)C.(-2,4)D.(-∞,-4)∪(2,+∞)

分析 先求出函数的单调性,根据函数单调性的性质得到关于m的不等式,解出即可.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{10})^{x},x≤10}\\{-lg(x+2),x>10}\end{array}\right.$,
∴函数f(x)在R上单调递减,
由f(8-m2)<f(2m),
得:8-m2>2m,解得:-4<m<2,
故选:A.

点评 本题考查了函数的单调性的应用,考查指数函数、对数函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.在数列{an}中,a1=-2,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$,则a2011=(  )
A.-2B.-$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=|x-1|-|x-a|是奇函数而不是偶函数,且f(x)不恒为0,则(a+1)2016的值(  )
A.0B.1C.22016D.32016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=-x2+4x,x∈[0,5]值域(  )
A.[-5,4]B.[-5,0]C.[0,-5]D.[0,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一条光线从A(-$\frac{1}{2}$,0)处射到点B(0,1)后被y轴反射,则反射光线所在直线的方程为(  )
A.2x-y-1=0B.2x+y-1=0C.x-2y-1=0D.x+2y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如表:
一年级二年级三年级
男同学ABC
女同学XYZ
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,则事件M发生的概率为(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x≤1}\\{lo{g}_{4}(x-1),x>1}\end{array}\right.$,则2f(9)+f(log2$\frac{1}{6}$)=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥S-ABCD中,底面ABCD为菱形,∠BAD=60°,平面SAD⊥平面ABCD,SA=SD,E,P,Q分别是棱AD,SC,AB的中点.
(1)(文理)求证:PQ∥平面SAD;
(2)(理)如果SA=AB=2,求直线SA与平面SEQ成角的余弦值.
(文)如果SA=AB=2,求点C到平面SAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.x,y满足$\left\{{\begin{array}{l}{y≥|x-1|}\\{3y-x-3≤0}\end{array}}\right.$,则z=x+2y的最大值为(  )
A.0B.5C.7D.10

查看答案和解析>>

同步练习册答案