精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow{p}$=(1,2),$\overrightarrow{q}$=(x,3),若$\overrightarrow{p}$⊥$\overrightarrow{q}$,则|$\overrightarrow{p}$+$\overrightarrow{q}$|=5$\sqrt{2}$.

分析 $\overrightarrow{p}$⊥$\overrightarrow{q}$,可得$\overrightarrow{p}•\overrightarrow{q}$=0,解得x.再利用向量模的计算公式即可得出.

解答 解:∵$\overrightarrow{p}$⊥$\overrightarrow{q}$,∴$\overrightarrow{p}•\overrightarrow{q}$=x+6=0,解得x=-6.
∴$\overrightarrow{p}+\overrightarrow{q}$=(-5,5).
∴|$\overrightarrow{p}$+$\overrightarrow{q}$|=$\sqrt{(-5)^{2}+{5}^{2}}$=5$\sqrt{2}$.
故答案为:5$\sqrt{2}$.

点评 本题考查了向量垂直与数量积的关系、向量模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD中,O为AD的中点,AD∥BC,CD⊥平面PAD,PA=PD=5.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)若AD=8,BC=4,CD=3,求平面PAB与平面PCD所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,若输入a0=0,a1=1,a2=2,a3=3,a4=4,a5=5,x0=-1,则输出v的值为(  )
A.15B.3C.-3D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在棱台ABC-FED中,△DEF与△ABC分别是棱长为1与2的正三角形,平面ABC⊥平面BCDE,四边形BCDE为直角梯形,BC⊥CD,CD=1,点G为△ABC的重心,N为AB中点,$\overrightarrow{AM}$=λ$\overrightarrow{AF}$(λ∈R,λ>0),
(1)当$λ=\frac{2}{3}$时,求证:GM∥平面DFN;
(2)若直线MN与CD所成角为$\frac{π}{3}$,试求二面角M-BC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)的图象与函数y=x3-3x2+2的图象关于点($\frac{1}{2}$,0)对称,过点(1,t)仅能作曲线y=f(x)的一条切线,则实数t的取值范围是(  )
A.(-3,-2)B.[-3,-2]C.(-∞,-3)∪(-2,+∞)D.(-∞,-3)∪[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=|x+a|,g(x)=|x+3|-x,记关于x的不等式f(x)<g(x)的解集为M.
(1)若a-3∈M,求实数a的取值范围;
(2)若[-1,1]⊆M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在四棱锥P-ABCD中,$∠DBA=\frac{π}{2}$,$AB\underline{\underline∥}CD$,△PAB和△PBD都是边长为2的等边三角形,设P在底面ABCD的射影为O.
(1)求证:O是AD中点;
(2)证明:BC⊥PB;
(3)求点A到面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x+$\frac{2{a}^{2}+1}{a}$|+|x-a|(a>0)
(Ⅰ)证明:f(x)≥2$\sqrt{3}$;
(Ⅱ)当a=1时,求不等式f(x)≥5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,点B1在底面内的射影恰好是BC的中点,且BC=CA=2.
(1)求证:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B-AB1-C1的余弦值为$-\frac{5}{7}$,求斜三棱柱ABC-A1B1C1的高.

查看答案和解析>>

同步练习册答案