精英家教网 > 高中数学 > 题目详情
已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<β<α<π,设
c
=(0,1),若
a
+
b
=
c
,求α,β的值.
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由于向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),
c
=(0,1),
a
+
b
=
c
.可得cosα+cosβ=0,
sinα+sinβ=1.因此cosα=-cosβ=cos(π-β),由于0<β<α<π,可得α=π-β>β,0<β<
π
2
.代入sinα+sinβ=1.即可得出.
解答: 解:∵向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),
c
=(0,1),
a
+
b
=
c

∴cosα+cosβ=0,sinα+sinβ=1.
∴cosα=-cosβ=cos(π-β),
∵0<β<α<π,
∴0<π-β<π.
∴α=π-β>β,∴0<β<
π
2

∴sinα=sin(π-β)=sinβ.
∴2sinβ=1,即sinβ=
1
2

β=
π
6

α=
6
点评:本题考查了向量的运算及相等、诱导公式、正弦余弦函数的单调性,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex,x∈R
(1)求函数g(x)=f(x)-x的极值;
(2)若x∈R时,f(x)≥ax+1恒成立,求实数a的值;
(3)当a>1时,求证:F(x)=f(x)-ax-1在区间(lna,2lna)上有且仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=1是函数f(x)=
1
3
ax3-
3
2
x2+(a+1)x+5的一个极值点.
(1)求函数f(x)的解析式;
(2)若曲线y=f(x)与直线y=2x-2m+1有三个交点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+lg(x+1)-2.
(1)求函数f(x)的定义域;
(2)证明函数f(x)在定义域内为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M的方程x2+y2-2x-2y-6=0,以坐标原点为圆心的圆N与圆M相切.
(1)求圆N的方程;
(2)过点M作两条直线分别与圆N相交于A、B两点,且直线MA与MB的倾斜角互补,试判断直线MN和AB是否平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x3-ax+b在点x=0处有极值y=1,求出a,b,并求出该函数在[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+|x|+3
(1)作出函数f(x)的图象;
(2)求f(x)的单调区间;
(3)判断关于x的方程-x2+2|x|+3=a的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=e-x在点(0,1)处的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图的程序框图,运行相应的程序,输出的结果为
 

查看答案和解析>>

同步练习册答案