精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{x(x+4),x>0}\\{x(x-4),x≤0}\end{array}\right.$,则f(a)的值不可能为(  )
A.2016B.0C.-2D.$\frac{1}{2016}$

分析 由分段函数分类讨论以确定函数的值域,从而确定答案.

解答 解:①当x>0时,
f(x)=x(x+4)>0,
②当x≤0时,
f(x)=x(x-4)≥0,
故f(x)≥0,
故f(a)的值不可能为-2,
故选C.

点评 本题考查了分段函数的性质应用及分类讨论的思想方法应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知点P在曲线y=$\frac{1}{{e}^{x}+1}$(其中e为自然对数的底数)上运动,则曲线在点P处的切线斜率最小时的切线方程为y=-$\frac{1}{4}$x+$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\sqrt{\frac{1-2x}{x-2}}$的定义域是M,函数N={x|1<x<a,a>1}.
(1)设U=R,a=2时,求M∩(∁UN);
(2)当M∪(∁UN)=U时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=(x-1)ex-kx2(k∈R),当k∈(${\frac{1}{2}$,1)时,求函数f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某算法的程序框图如图所示,其中输入的变量z在1,2,3,…,36这36个整数中等可能随机产生,则按程序框图正确编程运行时输出y的值为i的概率Pi(i=l,2,3)分别为(  )
A.$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{6}$B.$\frac{1}{6}$,$\frac{1}{2}$,$\frac{1}{3}$C.$\frac{1}{3}$,$\frac{1}{2}$,$\frac{1}{6}$D.$\frac{1}{2}$,$\frac{1}{6}$,$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设点(x,y)在不等式组$\left\{\begin{array}{l}x≥1\\ y≥1\\ x+y-4≤0\end{array}\right.$所表示的平面区域上,若对于b∈[0,1]时,不等式ax-by>b恒成立,则实数a的取值范围是(  )
A.($\frac{2}{3}$,4)B.($\frac{2}{3}$,+∞)C.(4,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.从装有3个白球、2个红球的袋中任取3个,则所取的3个球中至多有1个红球的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一次测试中,为了了解学生的学习情况,从中抽取了n个学生的成绩(满分为100分)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100]的数据).
(1)求样本容量n和频率分布直方图中x,y的值;
(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取2名参加志愿者活动,所抽取的2名同学中得分都在[80,90)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.给出下列叙述:
①若关于x的不等式$\frac{ax-1}{x+1}$<0的解集是(-∞,-1)∪(-$\frac{1}{2}$,+∞),则a=-2;
②若x>0,y>0,且$\frac{1}{x}$+$\frac{9}{y}$=1,则x+y的最小值为16;
③已知a,b,c,d为实数,且c>d,若a>b,则a-c>b-d;
④函数y=loga(x+3)-1(a>0,且a≠1)的图象恒过定点A,若点A的坐标满足方程mx+ny+1=0,其中mn>0,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为4.
其中所有正确叙述的序号是①②.

查看答案和解析>>

同步练习册答案