精英家教网 > 高中数学 > 题目详情
1.已知$θ∈(0,\frac{π}{2})$,则曲线$\frac{x^2}{9}-\frac{y^2}{{4{{sin}^2}θ}}=1$与曲线$\frac{x^2}{{9-4{{cos}^2}θ}}-\frac{y^2}{4}=1$的(  )
A.离心率相等B.焦距相等C.虚轴长相等D.顶点相同

分析 由双曲线的几何性质,即求得长轴,虚轴和焦距的值,利用同角三角函数的基本关系,即可求得答案.

解答 解:由曲线$\frac{x^2}{9}-\frac{y^2}{{4{{sin}^2}θ}}=1$,焦点在x轴上,长轴长为2a=6,虚轴长2b=4sinθ,
焦距为:2$\sqrt{9+4si{n}^{2}θ}$
与曲线$\frac{x^2}{{9-4{{cos}^2}θ}}-\frac{y^2}{4}=1$,焦点在x轴上,长轴长为2a=2$\sqrt{9-4co{s}^{2}θ}$,虚轴长2b=4,
焦距为:2$\sqrt{9-4co{s}^{2}θ+4}$$\sqrt{9+4(1-co{s}^{2}θ)}$=2$\sqrt{9+4si{n}^{2}θ}$,
故两者焦距相等,
故答案选:B.

点评 本题考查双曲线简单几何性质,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在数列{an}中,a1=2,an+1=1-an(n∈N*),Sn为数列的前n项和,则S2015-2S2016+S2017的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)的定义域为R,若存在常数m>0,使|f(x)|≤m|x|对一切实数x均成立,则称f(x)为F函数.给出下列函数:①f(x)=0;②f(x)=2x;③f(x)=$\sqrt{2}$(sinx+cosx); ④f(x)=$\frac{x}{{x}^{2}+x+1}$;你认为上述四个函数中,哪几个是F函数,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题的否定为假命题的是(  )
A.?x∈R,x2+2x+2≤0B.任意一个四边形的四个顶点共圆
C.?x∈R,sin2x+cos2x=1D.所有能被3整除的整数都是奇数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l:3x+4y-12=0与x轴、y轴分别相交于A、B.
(1)求过点P(1,2)且在x轴、y轴上截距均相等的直线的方程;
(2)求与直线l、x轴、y轴都相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(2x+1)=4x+2,求f(x)的解析式y=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四组函数中,有相同图象的一组是(  )
A.f(x)=x,$g(x)=\sqrt{x{\;}^2}$B.f(x)=x,$g(x)=\root{3}{x^3}$
C.f(x)=sinx,g(x)=sin(π+x)D.f(x)=x,g(x)=elnx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图:已知$\overrightarrow{OC}=-\frac{1}{2}\overrightarrow{OA}$,若$\overrightarrow{OP}$的终点P在△OBC的边界及内部,且$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}$则x、y满足的条件为(  )
A.$\left\{{\begin{array}{l}{-\frac{1}{2}≤x≤0}\\{0≤y≤1}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x≤0}\\{y≥0}\\{y-2x-1≤0}\end{array}}\right.$
C.$\left\{{\begin{array}{l}{x≤0}\\{y≥0}\\{2y-x-1≤0}\end{array}}\right.$D.$\left\{{\begin{array}{l}{-\frac{1}{2}≤x≤0}\\{0≤y≤1}\\{y-2x-1≤0}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x∈(0,$\frac{π}{2}$),求证:sinx<x.

查看答案和解析>>

同步练习册答案