| A. | $({1,\sqrt{2}})$ | B. | $({-\sqrt{2},-1})∪({1,\sqrt{2}})$ | C. | $({-\sqrt{2},\sqrt{2}})$ | D. | $({-\sqrt{2},-1})∪({-1,1})∪({1,\sqrt{2}})$ |
分析 联立直线y=kx-1和双曲线x2-y2=1,化为(1-k2)x2+2kx-2=0,由于直线y=kx-1与双曲线x2-y2=1的右支交于不同两点A,B,可得1-k2≠0.由△=4k2+8(1-k2)>0,1<k,解得即可.
解答 解:联立直线y=kx-1和双曲线x2-y2=1,化为(1-k2)x2+2kx-2=0,
∵直线y=kx-1与双曲线x2-y2=1的右支交于不同两点A,B,
∴1-k2≠0.由△=4k2+8(1-k2)>0,1<k,解得1<k<$\sqrt{2}$.
∴k的取值范围是(1,$\sqrt{2}$).
故选:A.
点评 本题综合考查了直线与双曲线的相交转化为方程联立得到△>0,属于中档题.
科目:高中数学 来源:2016-2017学年江西上高县二中高二文9月月考数学文试卷(解析版) 题型:填空题
如下图是正方体的平面展开图,则在这个正方体中:
①
与
平行
②
与
是异面直线
③
与
成60o角
④
与
是异面直线
以上四个命题中,正确命题的序号是_________.
![]()
查看答案和解析>>
科目:高中数学 来源:2015-2016学年四川成都石室中学高二理下期中数学试卷(解析版) 题型:填空题
已知双曲线
的右焦点为
,过点
且平行于双曲线的一条渐近线的直线与双曲线交于点
,
在直线
上, 且满足
,则
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{6}$个长度单位,再把所得各点的横坐标变为原来的$\frac{1}{2}$倍,纵坐标不变 | |
| B. | 向左平移$\frac{π}{3}$个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变 | |
| C. | 向左平移$\frac{π}{3}$个长度单位,再把所得各点的横坐标变为原来的$\frac{1}{2}$倍,纵坐标不变 | |
| D. | 向左平移$\frac{π}{6}$个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com