分析 (1)设AC∩BD=G,连接GF.由BF⊥面ACE,得到BF⊥CE,再由BE=BC,得到F为EC的中点.在矩形ABCD中,G为AC中点,由三角形的中位线可得到GF∥AE.再由线面平行的判定定理得证.
(2)证明AE⊥平面BCE,即可得出结论.
解答
(1)证明:设AC∩BD=G,连接GF.
因为BF⊥面ACE,CE?面ACE,所以BF⊥CE.
因为BE=BC,所以F为EC的中点.
在矩形ABCD中,G为AC中点,所以GF∥AE.
因为AE?面BFD,GF?面BFD,所以AE∥面BFD.
(2)解:因为BF⊥平面ACE,AE?平面ACE,
所以BF⊥AE,
因为DA⊥平面ABE,CB∥DA,AE?平面ABE,
所以AE⊥BC,
因为BF∩BC=B,
所以AE⊥平面BCE,
所以AE⊥BE,
因为AB=$\sqrt{2}$,
所以AE=1,
即点A到平面BCE的距离为1.
点评 本题考查点到平面的距离的求法,直线与平面平行的判定定理的应用,考查空间想象能力以及逻辑推理计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com