3£®ÉèµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒa2+a16=34£¬S4=16£®ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬Âú×ãTn+bn=1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Ð´³öÒ»¸öÕýÕûÊým£¬Ê¹µÃ$\frac{1}{{{a_m}+9}}$ÊÇÊýÁÐ{bn}µÄÏ
£¨3£©ÉèÊýÁÐ{cn}µÄͨÏʽΪcn=$\frac{a_n}{{{a_n}+t}}$£¬ÎÊ£ºÊÇ·ñ´æÔÚÕýÕûÊýtºÍk£¨k¡Ý3£©£¬Ê¹µÃc1£¬c2£¬ck³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬ÇëÇó³öËùÓзûºÏÌõ¼þµÄÓÐÐòÕûÊý¶Ô£¨t£¬k£©£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Í¨¹ý½â·½³Ì×é$\left\{\begin{array}{l}{2{a}_{1}+16d=34}\\{4{a}_{1}+6d=16}\end{array}\right.$£¬½ø¶ø¼ÆËã¿ÉµÃ½áÂÛ£»
£¨2£©Í¨¹ýTn=1-bnÓëTn+1=1-bn+1×÷²î¿ÉÖªÊýÁÐ{bn}ÊÇÊ×Ïî¡¢¹«±È¾ùΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ¬Í¨¹ý»¯¼òÖ»Òªm+42n¼´¿É£»
£¨3£©Í¨¹ý£¨1£©Öªcn=$\frac{2n-1}{2n-1+t}$£¬½ø¶øÖ»Ðèk=3+$\frac{4}{t-1}$£¬¿¼Âǵ½kÓët¶¼ÊÇÕýÕûÊý£¬ÒÀ´Îѡȡ²¢¼ìÑé¼´¿É£®

½â´ð ½â£º£¨1£©ÉèÊýÁÐ{an}µÄÊ×ÏîΪa1£¬¹«²îΪd£¬
ÓÉÒÑÖª£¬ÓÐ$\left\{\begin{array}{l}{2{a}_{1}+16d=34}\\{4{a}_{1}+6d=16}\end{array}\right.$£¬
½âµÃ£ºa1=1£¬d=2£¬
¡àÊýÁÐ{an}µÄͨÏʽan=2n-1£»
£¨2£©µ±n=1ʱ£¬b1=T1=1-b1£¬ËùÒÔb1=$\frac{1}{2}$£¬
ÓÉTn=1-bn£¬µÃTn+1=1-bn+1£¬
Á½Ê½Ïà¼õ£¬µÃ£ºbn+1=bn-bn+1£¬¼´bn+1=$\frac{1}{2}$bn£¬
¡àÊýÁÐ{bn}ÊÇÊ×Ïî¡¢¹«±È¾ùΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ¬
¡àbn=$\frac{1}{{2}^{n}}$£¬
¡ß$\frac{1}{{a}_{m}+9}$=$\frac{1}{2m+8}$=$\frac{1}{2£¨m+4£©}$£¬
¡àҪʹ$\frac{1}{{a}_{m}+9}$ÊÇÊýÁÐ{bn}ÖеÄÏֻҪm+4=2n¼´¿É£¬
¹Ê¿ÉÈ¡m=4£»
£¨3£©½áÂÛ£º´æÔÚ·ûºÏÌõ¼þµÄÕýÕûÊýtºÍk£¬ËùÓзûºÏÌõ¼þµÄÓÐÐòÕûÊý¶Ô£¨t£¬k£©Îª£º£¨2£¬7£©¡¢£¨3£¬5£©¡¢£¨5£¬4£©£®
ÀíÓÉÈçÏ£º
ÓÉ£¨1£©Öª£¬cn=$\frac{2n-1}{2n-1+t}$£¬
Ҫʹc1£¬c2£¬ck³ÉµÈ²îÊýÁУ¬±ØÐë2c2=c1+ck£¬
¼´$\frac{6}{3+t}$=$\frac{1}{1+t}$+$\frac{2k-1}{2k-1+t}$£¬»¯¼òµÃk=3+$\frac{4}{t-1}$£®
ÒòΪkÓët¶¼ÊÇÕýÕûÊý£¬ËùÒÔtÖ»ÄÜÈ¡2£¬3£¬5£®
µ±t=2ʱ£¬k=7£»
µ±t=3ʱ£¬k=5£»
µ±t=5ʱ£¬k=4£®
×ÛÉÏ¿ÉÖª£¬´æÔÚ·ûºÏÌõ¼þµÄÕýÕûÊýtºÍk£¬
ËùÓзûºÏÌõ¼þµÄÓÐÐòÕûÊý¶Ô£¨t£¬k£©Îª£º£¨2£¬7£©¡¢£¨3£¬5£©¡¢£¨5£¬4£©£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏעÒâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èôa£¬b£¬cΪ¡÷ABCµÄÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ËüµÄÃæ»ýΪ$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4\sqrt{3}}$£¬Ôò½ÇCµÈÓÚ£¨¡¡¡¡£©
A£®30¡ãB£®45¡ãC£®60¡ãD£®90¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Óá°Îåµã·¨¡±»­³öº¯Êýy=2cos£¨2x-$\frac{¦Ð}{6}$£©µÄͼÏó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖª½Ç¦Á£¬¦Â¾ùΪÈñ½Ç£¬ÇÒtan¦Á=$\frac{4}{3}£¬tan£¨¦Á-¦Â£©=-\frac{1}{3}$£¬Ôòtan¦Â=£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®3C£®$\frac{13}{9}$D£®$\frac{9}{13}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©Éϵĵ㵽Á½½¹µãµÄ¾àÀëºÍΪ$\frac{2}{3}$£¬¶ÌÖ᳤Ϊ$\frac{1}{2}$£¬Ö±ÏßlÓëÍÖÔ²C½»ÓÚM£¬NÁ½µã£®
£¨¢ñ£©ÇóÍÖÔ²C·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßMNÓëÔ²O£ºx2+y2=$\frac{1}{25}$ÏàÇУ¬Ö¤Ã÷£º¡ÏMONΪ¶¨Öµ£»
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬Çó|OM||ON|µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{x+\frac{4}{x}£¨x£¾0£©}\\{{x}^{3}+4£¨x¡Ü0£©}\end{array}\right.$£¬Èô¹ØÓÚxµÄ·½³Ìf£¨x2£©=a£¨a¡ÊR£©ÓÐËĸö²»Í¬µÄʵ¸ù£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨4£¬+¡Þ£©B£®[4£¬+¡Þ£©C£®£¨-¡Þ£¬4£©D£®£¨4£¬7£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÎªÇó3+6+9+¡­+30µÄºÍ£¬²¹È«Èçͼ³ÌÐò¡°Ìõ¼þ¡±Ó¦Ìîi¡Ü10»òi£¼11£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ËıßÐÎABCDΪ¾ØÐΣ¬DA¡ÍÆ½ÃæABE£¬AE=EB=BC£¬FΪCEÉϵĵ㣬ÇÒBF¡ÍÆ½ÃæACE£®
£¨1£©ÇóÖ¤£ºAE¡ÎÆ½ÃæBFD£»
£¨2£©ÈôAB=$\sqrt{2}$£¬ÇóµãAµ½Æ½ÃæBCEµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®½«Ò»¸öËÄÃæÌåPABCÌúƤºÐÑØ²àÀâPA£¬PB£¬PC¼ô¿ª£¬Õ¹Æ½ºóÇ¡ºÃ³ÉÒ»¸öÕýÈý½ÇÐΣ®
£¨¢ñ£©ÔÚËÄÃæÌåPABCÖУ¬ÇóÖ¤£ºPA¡ÍBC£®
£¨¢ò£©Èô$PA=\sqrt{2}$£¬ÇóÌúƤºÐµÄÈÝ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸