精英家教网 > 高中数学 > 题目详情

【题目】已知在△ABC中,角A,B,C所对的边分别为a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面积.

【答案】解:①∵2sinAcosB=2sinC﹣sinB, ∵由正弦定理可得:2acosB=2c﹣b,即:cosB=
又∵cosB=
= ,解得:b2+c2﹣a2=bc,
∴cosA= = =
又∵A∈(0,π),
∴A=
②∵由余弦定理可得:a2=b2+c2﹣2bccosA,a=4 ,b+c=8,
∴(4 2=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,
∴bc=
∴△ABC 的面积S= bcsinA= =
【解析】①由正弦定理化简已知等式可得cosB= ,结合余弦定理可求b2+c2﹣a2=bc,可求cosA,结合范围A∈(0,π),可求A的值.②由已知及余弦定理可得bc= ,进而利用三角形面积公式即可计算得解.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣2ax+lnx(a∈R),x∈(1,+∞).
(1)若函数f(x)有且只有一个极值点,求实数a的取值范围;
(2)对于函数f(x)、f1(x)、f2(x),若对于区间D上的任意一个x,都有f1(x)<f(x)<f2(x),则称函数f(x)是函数f1(x)、f2(x)在区间D上的一个“分界函数”.已知f1(x)=(1﹣a2)lnx,f2(x)=(1﹣a)x2 , 问是否存在实数a,使得f(x)是函数f1(x)、f2(x)在区间(1,+∞)上的一个“分界函数”?若存在,求实数a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C所对的边分别为a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷两枚骰子,求:

(1)点数之和为4的倍数的概率;

(2)点数之和大于5而小于10的概率;

(3)同时抛两枚骰子,求至少有一个5点或者6点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明“能被3整除”的第二步中,时,为了使用假设,应将5k+1-2k+1变形为( ).

A. (5k-2k)+4×5k-2k B. 5(5k-2k)+3×2k

C. (5-2)(5k-2k) D. 2(5k-2k)-3×5k

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A{x|2x2ax20}B{x|x23x2a0},且AB{2}

(1)a的值及集合AB

(2)设全集UAB,求(UA)(UB)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,椭圆C的参数方程为 (θ为参数).
(1)以原点为极点,x轴的正半轴为极轴建立极坐标系,求椭圆C的极坐标方程;
(2)设M(x,y)为椭圆C上任意一点,求x+2y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的棱长均为.点是侧棱的中点,点分别是侧面,底面的动点,且平面平面.则点的轨迹的长度为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.我们教材中利用该图作为一个说法的一个几何解释,这个说法正确的是(

A.如果,那么B.如果,那么

C.对任意正实数,有 当且仅当时等号成立D.对任意正实数,有,当且仅当时等号成立

查看答案和解析>>

同步练习册答案