精英家教网 > 高中数学 > 题目详情
一台仪器每启动一次都随机地出现一个5位的二进制数,其中A的各位数字中,a1=1,ak(k=2,3,4,5)出现0的概率为
1
3
,出现1的概率为
2
3
.(例如:A=10001,其中a1=a5=1.a2=a3=a4=0.)记ξ=a1+a2+a3+a4+a5,当启动仪器一次时,
(Ⅰ)求ξ=3的概率;         
(Ⅱ)求ξ的概率分布列及Eξ.
分析:(Ⅰ)由题意得:P(ξ=3)=C
 
2
4
•(
1
3
2•(
2
3
2,由此能求出ξ=3的概率.
(Ⅱ)由题设知,ξ的可能取值为1,2,3,4,5,分别求出P(ξ=1),P(ξ=2),P(ξ=3),P(ξ=4),P(ξ=5),由此能求出ξ的概率分布列和Eξ.
解答:解:(Ⅰ)由题意得:P(ξ=3)=C
 
2
4
•(
1
3
2•(
2
3
2=
8
27

(Ⅱ)由题设知,ξ的可能取值为1,2,3,4,5,
故ξ的概率分布列为:
ξ 1 2 3 4 5

P
1
81
8
81
24
81
32
81
16
81
∴Eξ=1×
1
81
+2×
8
81
+3×
24
81
+4×
32
81
+5×
16
81
=
11
3
…(13分)
点评:本题考查离散型随机变量的概率分布列和数学期望,是中档题.解题时要认真审题,仔细解答,注意概率知识的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一台仪器每启动一次都随机地出现一个5位的二进制数A=a1a2a3a4a5,其中A的各位数字中,a1=1,ak(k=2,3,4,5)出现0的概率为
1
3
,出现1的概率为
2
3
.记ξ=a1+a2+a3+a4+a5(例如:A=10101,即表示a1=a3=a5=1,a2=a4=0,而ξ=3),当仪器启动一次时,
(1)求ξ=3的概率;
(2)求ξ的概率分布列;
(3)若启动一次出现的数字为A=10101则称这次试验成功,求5次重复试验成功的次数的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

一台仪器每启动一次都随机地出现一个10位的二进制数A=a1a2a3…a10,其中A的各位数字中,a1=1,ak(k=2,3,…,10)出现0的概率为
1
3
,出现1的概率为
2
3
,例如:A=1001110001,其中a2=a3=a7=a8=a9=0,a4=a5=a6=a10=1,记S=a1+a2+a3+…+a10,当启动仪器一次时.则S=5,且有且仅有4个0连排在一起时的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一台仪器每启动一次都随机地出现一个5位的二进制数精英家教网,其中A的各位数字中,a1=1,ak(k=2,3,4,5)出现0的概率为
1
3
,ak(k=2,3,4,5)出现1的概率为
2
3
,记ξ=a1+a2+a3+a4+a5(例如:A=10001,其中a1=a5=1,a2=a3=a4=0,且ξ=2).当启动仪器一次时,
(I)求ξ=3的概率;
(Ⅱ)求当ξ为何值时,其概率最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

一台仪器每启动一次都随机地出现一个5位的二进制数A=a1a2a3a4a5,其中A的各位数字中,a1=1,ak(k=2,3,4,5)出现0的概率为
1
3
,出现1的概率为
2
3
.例如:A=10001,其中a1=a5=1,a2=a3=a4=0.记ξ=a1+a2+a3+a4+a5,当启动仪器一次时     
(Ⅰ)求ξ=3的概率;      
(Ⅱ)求ξ的概率分布列及Eξ

查看答案和解析>>

同步练习册答案