精英家教网 > 高中数学 > 题目详情
用反正弦形式表示式中的x值:sinx=a,a∈(-1,0),x∈[π,2π].
考点:反三角函数的运用
专题:计算题,三角函数的求值
分析:根据arcsina表示[-
π
2
π
2
]上正弦值等于a的一个角,且sinx=a,a∈(-1,0),x∈[π,2π],从而求得角x的值.
解答: 解:由于arcsina表示[-
π
2
π
2
]上正弦值等于a的一个角,
因为sinx=a,a∈(-1,0),x∈[π,2π],
故x=π-arcsina.
点评:本题主要考查反三角函数的定义的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα=
2
5
5
,sin(α-β)=
10
10
,且α,β∈(0,
π
2
).求:
(Ⅰ)cos(2α-β)的值.
(Ⅱ)β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
cos2x+
3
2
sinx•cosx-
1
4

(Ⅰ)求f(x)的最小正周期和值域;
(Ⅱ)若a是第一象限的角,且f(
a
2
-
π
12
)=
3
4
,求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x+ax2+blnx,其对应的图象为曲线C;若曲线C过点P(1,0),且在点P(1,0)处的切线斜率k=2,
(1)求函数y=f(x)的解析式;
(2)证明不等式f(x)≤2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a1=λ,an+1=
2
3
an+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.
(1)对任意实数λ,求证:a1,a2,a3不成等比数列;
(2)试判断数列{bn}是否为等比数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=msinx+
3
cosx,(m>0)的最大值为2.
(1)求函数f(x)在[0,π]上的值域;
(2)已知△ABC外接圆半径R=2,f(A-
π
3
)+f(B-
π
3
)=8sinAsinB,角A,B所对的边分别是a,b,求
1
a
+
1
b
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ln(x+1),g(x)=
1
2
ax2+bx

(1)若a=0,b=1时,求证:f(x)-g(x)≤0对于x∈(-1,+∞)恒成立;
(2)若b=2,且h(x)=f(x-1)-g(x)存在单调递减区间,求a的取值范围;
(3)利用(1)的结论证明:若0<x<y,则xlnx+ylny>(x+y)ln
x+y
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,cos2C=-
1
9

(1)求sinC的值;
(2)当a=3,3sinC=
6
sinA时,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,函数f(x)=|x+a|+|x-b|的最小值为2,则a2+b2的最小值为
 

查看答案和解析>>

同步练习册答案