【题目】如图,棱形的边长为6, ,.将棱形沿对角线折起,得到三棱锥,点是棱的中点, .
(Ⅰ)求证:∥平面;
(Ⅱ)求三棱锥的体积.
【答案】(1)详见解析;(2).
【解析】试题分析:(1)求证:平面,这是证明线面平行问题,证明线面平行,即证线线平行,可利用三角形的中位线,或平行四边形的对边平行,本题注意到是的中点,点是棱的中点,因此由三角形的中位线可得,,从而可得平面;(2)求三棱锥的体积,由已知,由题意,可得,从而得平面,即平面,因此把求三棱锥的体积,转化为求三棱锥的体积,因为高,求出的面积即可求出三棱锥的体积.
试题解析:(1)证明:因为点是菱形的对角线的交点,
所以是的中点.又点是棱的中点,
所以是的中位线,. 2分
因为平面,平面, 4分
所以平面. 6分
(2)三棱锥的体积等于三棱锥的体积. 7分
由题意,,
因为,所以,. 8分
又因为菱形,所以. 9分
因为,所以平面,即平面10分
所以为三棱锥的高. 11分
的面积为, 13分
所求体积等于. 14分
科目:高中数学 来源: 题型:
【题目】设函数(,,,)的图象在点处的切线的斜率为,且函数为偶函数.若函数满足下列条件:①;②对一切实数,不等式恒成立.
(1)求函数的表达式;
(2)设函数()的两个极值点,()恰为的零点.当时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年12月16日,科幻片《侠盗一号》上映,上映至今,全球累计票房高达8亿美金.为了了解娄底观众的满意度,某影院随机调查了本市观看影片的观众,并用“10分制”对满意度进行评分,分数越高满意度越高,若分数不低于9分,则称该观众为“满意观众”.现从调查人群中随机抽取12名.如图所示的茎叶图记录了他们的满意度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).
(1)求从这12人中随机选取1人,该人不是“满意观众”的概率;
(2)从本次所记录的满意度评分大于9.1的“满意观众”中随机抽取2人,求这2人得分不同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海关对同时从,,三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区 | |||
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自,,各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】水是万物之本、生命之源,节约用水,从我做起.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,为上异于原点的任意一点,过点的直线交于另一点,交轴的正半轴于点,且有.当点的横坐标为3时,为正三角形.
(1)求的方程;
(2)延长交抛物线于点,过点作抛物线的切线,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com