精英家教网 > 高中数学 > 题目详情

【题目】如图,棱形的边长为6, ,.将棱形沿对角线折起,得到三棱锥,点是棱的中点, .

(Ⅰ)求证:∥平面;

(Ⅱ)求三棱锥的体积.

【答案】1)详见解析;(2.

【解析】试题分析:(1)求证:平面,这是证明线面平行问题,证明线面平行,即证线线平行,可利用三角形的中位线,或平行四边形的对边平行,本题注意到的中点,点是棱的中点,因此由三角形的中位线可得,,从而可得平面;(2)求三棱锥的体积,由已知,由题意,可得,从而得平面,即平面,因此把求三棱锥的体积,转化为求三棱锥的体积,因为高,求出的面积即可求出三棱锥的体积.

试题解析:(1)证明:因为点是菱形的对角线的交点,

所以的中点.又点是棱的中点,

所以的中位线,. 2

因为平面,平面4

所以平面. 6

(2)三棱锥的体积等于三棱锥的体积. 7

由题意,,

因为,所以. 8

又因为菱形,所以. 9

因为,所以平面,即平面10

所以为三棱锥的高. 11

的面积为13

所求体积等于. 14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过点的动直线与圆相交于两点,与直线相交于.

(1)当垂直时,求直线的方程,并判断圆心与直线的位置关系;

(2)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)恒成立,求实数的取值范围;

(Ⅲ)求整数的值,使函数在区间上有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的图象在点处的切线的斜率为,且函数为偶函数.若函数满足下列条件:对一切实数,不等式恒成立.

1求函数的表达式;

2设函数的两个极值点恰为的零点.当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20161216科幻片《侠盗一号》上映上映至今全球累计票房高达8亿美金.为了了解娄底观众的满意度某影院随机调查了本市观看影片的观众并用“10分制对满意度进行评分分数越高满意度越高若分数不低于9则称该观众为满意观众”.现从调查人群中随机抽取12.如图所示的茎叶图记录了他们的满意度分数(以小数点前的一位数字为茎小数点后的一位数字为叶).

(1)求从这12人中随机选取1该人不是满意观众的概率;

(2)从本次所记录的满意度评分大于9.1满意观众中随机抽取2求这2人得分不同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.

地区

数量

50

150

100

1)求这6件样品中来自各地区商品的数量;

2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】水是万物之本、生命之源,节约用水,从我做起.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为上异于原点的任意一点,过点的直线于另一点,交轴的正半轴于点,且有.当点的横坐标为3时,为正三角形.

(1)求的方程;

(2)延长交抛物线于点,过点作抛物线的切线,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数为偶函数,且在区间上是单调递增函数。

求函数的解析式;

)设能取遍内的所有实数,求实数的取值范围

查看答案和解析>>

同步练习册答案