精英家教网 > 高中数学 > 题目详情

【题目】已知幂函数为偶函数,且在区间上是单调递增函数。

求函数的解析式;

)设能取遍内的所有实数,求实数的取值范围

【答案】(;(

【解析】

试题分析:()由幂函数的定义知,再由幂函数的性质得,由此可解得,得解析式;)题意说明的值域包含,因此可利用导数求其值域,,显然当时,是单调减函数,值域为R,符合题意,当时,有实根,则要求的最小值小于或等于0即可.

试题解析:为幂函数

在区间上是单调递增函数

时,为奇函数,不合题意,舍去

时,为偶函数,符合题意

时,为奇函数,不合题意,舍去

)由知,

时,,则单调递减,其值域为,满足题意

时,由,则单调递减,在单调递增,,则其值域为

能取遍内的所有实数 只需

单调递增

综合①②知,实数的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,棱形的边长为6, ,.将棱形沿对角线折起,得到三棱锥,点是棱的中点, .

(Ⅰ)求证:∥平面;

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—1:几何证明选讲

如图,已知圆的外接圆, ,边上的高,是圆的直径,过点作圆的切线交的延长线于点.

求证:

,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左焦点为,离心率为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)为坐标原点, 为直线上一点,过的垂线交椭圆于 .当四边形是平行四边形时,求四边形的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的图象形如汉字“囧”,故称其为“囧函数”.

下列命题:

①“囧函数”的值域为

②“囧函数”在上单调递增;

③“囧函数”的图象关于轴对称;

④“囧函数”有两个零点;

⑤“囧函数”的图象与直线

至少有一个交点.正确命题的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,我海监船在岛海域例行维权巡航,某时刻航行至处,此时测得其东北方向与它相距海里的处有一外国船只,且岛位于海监船正东海里处。

(Ⅰ)求此时该外国船只与岛的距离;

(Ⅱ)观测中发现,此外国船只正以每小时海里的速度沿正南方向航行。为了将该船拦截在离海里处,不让其进入海里内的海域,试确定海监船的航向,并求其速度的最小值.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为且椭圆上一点到其两焦点的距离之和为

1求椭圆的标准方程

2设直线与椭圆交于不同两点若点满足的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

健步走是一种方便而又有效的锻炼方式,老师每天坚持健步走,并用计步器进行统计.他最近8天健步走步数的条形统计图及相应的消耗能量数据表如下:

I)求老师这8天健步走步数的平均数;

II)从步数为16千步,17千步,18千步的6天中任选2天,设老师这2天通过健步走消耗的能量和为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知曲线为参数),在以为极点, 轴正半轴为极轴的极坐标系中,曲线,曲线.

(1)求曲线的交点的直角坐标;

(2)设点 分别为曲线上的动点,求的最小值.

查看答案和解析>>

同步练习册答案