【题目】已知幂函数为偶函数,且在区间上是单调递增函数。
(Ⅰ)求函数的解析式;
(Ⅱ)设,若能取遍内的所有实数,求实数的取值范围.
【答案】(Ⅰ);(Ⅱ)
【解析】
试题分析:(Ⅰ)由幂函数的定义知,再由幂函数的性质得,由此可解得,得解析式;(Ⅱ)题意说明的值域包含,因此可利用导数求其值域,,显然当时,,是单调减函数,值域为R,符合题意,当时,有实根,则要求的最小值小于或等于0即可.
试题解析:(Ⅰ)∵为幂函数 ∴
又在区间上是单调递增函数 ∴
则 ∵ ∴或或
当时,为奇函数,不合题意,舍去
当时,为偶函数,符合题意
当时,为奇函数,不合题意,舍去
故
(Ⅱ)由(Ⅰ)知,
①当时,,则单调递减,其值域为,满足题意
②当时,由得,则在单调递减,在单调递增,∴,则其值域为
∵能取遍内的所有实数 ∴只需
令 则在单调递增
又 ∴
综合①②知,实数的取值范围为
科目:高中数学 来源: 题型:
【题目】选修4—1:几何证明选讲
如图,已知圆是的外接圆, ,是边上的高,是圆的直径,过点作圆的切线交的延长线于点.
(Ⅰ)求证:;
(Ⅱ)若,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: ()的左焦点为,离心率为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设为坐标原点, 为直线上一点,过作的垂线交椭圆于, .当四边形是平行四边形时,求四边形的面积。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的图象形如汉字“囧”,故称其为“囧函数”.
下列命题:
①“囧函数”的值域为;
②“囧函数”在上单调递增;
③“囧函数”的图象关于轴对称;
④“囧函数”有两个零点;
⑤“囧函数”的图象与直线
至少有一个交点.正确命题的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,我海监船在岛海域例行维权巡航,某时刻航行至处,此时测得其东北方向与它相距海里的处有一外国船只,且岛位于海监船正东海里处。
(Ⅰ)求此时该外国船只与岛的距离;
(Ⅱ)观测中发现,此外国船只正以每小时海里的速度沿正南方向航行。为了将该船拦截在离岛海里处,不让其进入岛海里内的海域,试确定海监船的航向,并求其速度的最小值.
(参考数据: , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:()的右焦点为,且椭圆上一点到其两焦点,的距离之和为.
(1)求椭圆的标准方程;
(2)设直线:()与椭圆交于不同两点,,且,若点满足,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
“健步走”是一种方便而又有效的锻炼方式,李老师每天坚持“健步走”,并用计步器进行统计.他最近8天“健步走”步数的条形统计图及相应的消耗能量数据表如下:
(I)求李老师这8天“健步走”步数的平均数;
(II)从步数为16千步,17千步,18千步的6天中任选2天,设李老师这2天通过“健步走”消耗的能量和为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知曲线(为参数),在以为极点, 轴正半轴为极轴的极坐标系中,曲线,曲线.
(1)求曲线与的交点的直角坐标;
(2)设点, 分别为曲线上的动点,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com