精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 )的左焦点为,离心率为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)为坐标原点, 为直线上一点,过的垂线交椭圆于 .当四边形是平行四边形时,求四边形的面积。

【答案】(1) ;(2

【解析】试题分析:(1)由已知得: ,所以,再由可得,从而得椭圆的标准方程. )椭圆方程化为.PQ的方程为,代入椭圆方程得: .面积,而,所以只要求出的值即可得面积.因为四边形OPTQ是平行四边形,所以,即.

再结合韦达定理即可得的值.

试题解析:(1)由已知得: ,所以

又由,解得,所以椭圆的标准方程为: .

2)椭圆方程化为.

T点的坐标为,则直线TF的斜率.

时,直线PQ的斜率,直线PQ的方程是

时,直线PQ的方程是,也符合的形式.

代入椭圆方程得: .

其判别式.

.

因为四边形OPTQ是平行四边形,所以,即.

所以,解得.

此时四边形OPTQ的面积

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数的图象在点处的切线的斜率为,且函数为偶函数.若函数满足下列条件:对一切实数,不等式恒成立.

1求函数的表达式;

2设函数的两个极值点恰为的零点.当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为上异于原点的任意一点,过点的直线于另一点,交轴的正半轴于点,且有.当点的横坐标为3时,为正三角形.

(1)求的方程;

(2)延长交抛物线于点,过点作抛物线的切线,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为平行四边形, 为侧棱的中点.

(Ⅰ)求证: ∥平面

(Ⅱ)若,,

求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了完成对某城市的工薪阶层是否赞成调整个人所得税税率的调查,随机抽取了60人,作出了他们的月收入频率分布直方图(如图),同时得到了他们月收入情况与赞成人数统计表(如下表):

(1)试根据频率分布直方图估计这60人的平均月收入;

(2)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求2人都不赞成的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面均为正方形,,点是棱的中点.请建立适当的坐标系,求解下列问题:

(Ⅰ)求证:异面直线互相垂直;

(Ⅱ)求二面角(钝角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数为偶函数,且在区间上是单调递增函数。

求函数的解析式;

)设能取遍内的所有实数,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】同时抛掷甲、乙两颗骰子.

(1)求事件A“甲的点数大于乙的点数”的概率;

(2)若以抛掷甲、乙两颗骰子点数m,n作为点P的坐标(m,n),求事件B“P落在圆内”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四边形中,已知,点轴上,,且对角线

(1)求点的轨迹的方程;

(2)若点是直线上任意一点,过点作点的轨迹的两切线为切点,直线是否恒过一定点?若是,请求出这个定点的坐标;若不是,请说明理由.

查看答案和解析>>

同步练习册答案