精英家教网 > 高中数学 > 题目详情
6.求经过点A(3,-2)且与圆x2+y2-2x+6y+5=0切于点B(0,1)的圆的方程.

分析 先利用待定系数法假设圆的标准方程:(x-a)2+(y-b)2=r2,求出已知圆的圆心坐标与半径,再根据条件圆C过点A(3,-2)且与圆x2+y2-2x+6y+5=0切于点B(0,1),列出方程组可求相应参数,从而可求方程.

解答 解:设所求圆方程:(x-a)2+(y-b)2=r2
已知圆的圆心:(1,-3),半径=$\sqrt{5}$,
由题意可得:(3-a)2+(-2-b)2=r2,(0-a)2+(1-b)2=r2,(a-1)2+(b+3)2=$(\sqrt{5}+r)^{2}$,
解得a=5,b=-1,r=$\sqrt{5}$,
所求圆:(x-5)2+(y+1)2=5.

点评 本题的考点是圆的标准方程,主要考查利用待定系数法求圆的标准方程,考查学生分析解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.给定两个命题:p:对任意实数x都有mx2+mx+1>0恒成立;q:方程$\frac{x^2}{m-1}+\frac{y^2}{m-2}$=1表示焦点在x轴上的双曲线,如果p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={x|(x-1)2<4,x∈N},P={-1,0,1,2,3},则M∩P=(  )
A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$cos({{{75}°}+α})=\frac{1}{3}$,则sin(60°+2α)=$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线l1:x+my-2=0与直线l2:2x+(1-m)y+2=0平行,则m的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若“x=1”是“(x-a)[x-(a+2)]≤0”的充分不必要条件,则实数a的取值范围是(  )
A.[-1,+∞)B.(-1,1)C.[-1,1]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知非零向量$\overrightarrow a$=(cosα,cosα),向量$\overrightarrow b$=(sinα,cosθ-2sinα),向量$\overrightarrow c$=(1,2).
(I)若$\overrightarrow a$∥$\overrightarrow b$,求tanα的值;
(II)若|${\overrightarrow b}$|=|${\overrightarrow c}$|,0<α<π,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设数列{an}中,a1=3,$\frac{1}{3}{a_n}={a_{n-1}}+{3^n}$(n∈N*,n≥2),则an=(3n-2)•3n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若随机变量X~N(u,σ2)(σ>0),则有如下结论(  )
P(u-σ<X≤u+σ)=0.6826,
P(u-2σ<X≤u+2σ)=0.9544
P(u-3σ<X≤u+3σ)=0.9974,
一班有60名同学,一次数学考试的成绩服从正态分布,平均分110,方差为100,理论上说在120分到130分之间的人数约为(  )
A.6B.7C.8D.9

查看答案和解析>>

同步练习册答案