精英家教网 > 高中数学 > 题目详情
7.已知a∈R,求函数f(x)=$\frac{a}{x}$+ln x-1在区间(0,e]上的最小值.

分析 先求出函数f(x)的导数,通过讨论a的范围,得到函数的单调性,从而求出区间上的最小值.

解答 解:f′(x)=-$\frac{a}{{x}^{2}}$+$\frac{1}{x}$=$\frac{x-a}{{x}^{2}}$,
①a≤0时,f′(x)>0,f(x)在(0,+∞)递增,
∴f(x)在(0,e)无最小值,
②0<a<e时,令f′(x)>0,解得:x>a,令f′(x)<0,解得:0<x<a,
∴函数f(x)在(0,a)递减,在(a,e]递增,
∴f(x)min=f(a)=1+lna-1,
③a≥e时,f′(x)<0,
f(x)在(0,e]单调递减,
∴f(x)min=f(e)=$\frac{a}{e}$.

点评 本题考察了函数的单调性,函数的最值问题,导数的应用,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理,作为大前提的是(  )
A.B.C.D.其它

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图为y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的图象的一段,其解析式$y=\sqrt{3}sin({2x-\frac{2π}{3}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在△ABC中,MN∥DE∥BC,若AE:EC=7:3,则DB:AB的值为3:10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位中抽取50人进行问卷调查,得到了如下列联表:
 喜欢户外运动不喜欢户外运动合计
男性 5 
女性10 25
合计30 50
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜欢户外运动与性别有关?并说明你的理由.
下面的临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为$\left\{\begin{array}{l}x=1+2cosα\\ y=-1+2sinα\end{array}\right.$(α为参数),点Q的极坐标为$(2\sqrt{2},\frac{7}{4}π)$.
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)直线l过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线l的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知定义在区间(-1,1)上的函数$f(x)=\frac{x+a}{{{x^2}+1}}$为奇函数.
(1)求函数f(x)的解析式并判断函数f(x)在区间 (-1,1)上的单调性;
(2)解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某中学共2200名学生中有男生1200名,按男女性别用分层抽样的方法抽出110名学生,询问是否爱好某项运动.已知男生中有40名爱好该项运动,女生中有30名不爱好该项运动.
(1)完成如下的列联表:
总计
爱好40
不爱好30
总计
(2)通过计算说明,是否在犯错误的概率不超过0.01的前提下认为“爱好该项运动与性别有关”?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知各项都是正数的数列{an}的前n项和为Sn,Sn=an2+$\frac{1}{2}$an,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:b1=1,bn-bn-1=2an(n≥2),求数列{$\frac{1}{{b}_{n}}$}的前n项和Tn
(3)若Tn≤λ(n+4)对任意n∈N*恒成立,求λ的取值范围.

查看答案和解析>>

同步练习册答案