分析 由函数图象可得A,T,利用周期公式可解得ω,由函数图象过点($\frac{π}{3}$,0)可得:0=$\sqrt{3}$sin(2×$\frac{π}{3}$+φ),结合范围|φ|<π,可求φ,即可求得解析式.
解答 解:由函数图象可得:A=$\sqrt{3}$,T=2($\frac{5π}{6}-\frac{π}{3}$)=π=$\frac{2π}{ω}$,解得:ω=2,
由函数图象过点($\frac{π}{3}$,0)可得:0=$\sqrt{3}$sin(2×$\frac{π}{3}$+φ),解得:φ=k$π-\frac{2π}{3}$,k∈Z,
由|φ|<π,
可得:φ=-$\frac{2π}{3}$
所以其解析式为:$y=\sqrt{3}sin({2x-\frac{2π}{3}})$;
故答案为:$y=\sqrt{3}sin({2x-\frac{2π}{3}})$.
点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,属于基本知识的考查.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{7}{8}$ | B. | $-\frac{1}{4}$ | C. | $\frac{1}{4}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.220 | B. | 0.820 | C. | 1-0.820 | D. | 1-0.220 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com