精英家教网 > 高中数学 > 题目详情
13.数列{an}的前n项和是Sn,若数列{an}的各项按如下规则排列:$\frac{1}{2}$,$\frac{1}{3}$,$\frac{2}{3}$,$\frac{1}{4}$,$\frac{2}{4}$,$\frac{3}{4}$,$\frac{1}{5}$,$\frac{2}{5}$,$\frac{3}{5}$,$\frac{4}{5}$,$\frac{1}{6}$,…,若Sk<10,Sk+1≥10,则ak=$\frac{5}{7}$.

分析 把原数列分成$\frac{1}{2}$;$\frac{1}{3}$,$\frac{2}{3}$;$\frac{1}{4}$,$\frac{2}{4}$,$\frac{3}{4}$;$\frac{1}{5}$,$\frac{2}{5}$,$\frac{3}{5}$,$\frac{4}{5}$;$\frac{1}{6}$,…,构建新数列bn=n,由此利用Sk<10,Sk+1≥10,能求出ak

解答 解:把原数列分成$\frac{1}{2}$;$\frac{1}{3}$,$\frac{2}{3}$;$\frac{1}{4}$,$\frac{2}{4}$,$\frac{3}{4}$;$\frac{1}{5}$,$\frac{2}{5}$,$\frac{3}{5}$,$\frac{4}{5}$;$\frac{1}{6}$,…,
发现它们的个数是1,2,3,4,5,…
构建新数列bn,则bn=n等差数列,记bn的前n项和为Tn
由等差数列的前n项和得T5=$\frac{5(1+5)}{2}$=$\frac{15}{2}$,${T}_{6}=\frac{6(1+6)}{2}=\frac{21}{2}$,
∵Sk<10,Sk+1≥10,
∴ak定在$\frac{1}{7},\frac{2}{7},\frac{3}{7},\frac{4}{7},\frac{5}{7},\frac{6}{7}$之中,
∵${T}_{5}+\frac{1}{7}+\frac{2}{7}+\frac{3}{7}+\frac{4}{7}+\frac{5}{7}$=9+$\frac{9}{14}$<10,
${T}_{5}+\frac{1}{7}+\frac{2}{7}+\frac{3}{7}+\frac{4}{7}+\frac{5}{7}+\frac{6}{7}$=10+$\frac{1}{2}$>10,
∴ak=$\frac{5}{7}$.
故答案为:$\frac{5}{7}$.

点评 本题考查数列的第k项的求法,是中档题,解题时要认真审题,注意等差数列的性质和归纳整理的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若xlog52≥-1,则函数f(x)=4x-2x+1-3的最小值为(  )
A.-4B.-2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似实数排序的定义,我们定义“点序”记为“>”:已知M(x1,y1)和N(x2,y2),M>N,当且仅当“x1>x2”或“x1=x2且y1>y2”.定义两点的“⊕”与“?”运算如下:M⊕N=(x1+x2,y1+y2)    M?N=x1x2+y1y2.则下面四个命题:
①已知P(2015,2014)和Q(2014,2015),则P>Q;
②已知P(2015,2014)和Q(x,y),若P>Q,则x≤2015,且y≤2014;
③已知P>Q,Q>M,则P>M;
④已知P>Q,则对任意的点M,都有P⊕M>Q⊕M;
⑤已知P>Q,则对任意的点M,都有P?M>Q?M.
其中真命题的序号为①③④(把真命题的序号全部写出).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将正整数从1开始依次写下来,直至2015为止,得到一个新的正整数:1234…201320142015.这个正整数是几位数(  )
A.3506位数B.4518位数C.6953位数D.7045位数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{1}{2}[f({x_1})+f({x_2})]$,则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:
①f(x)在[1,3]上的图象是连续不断的;
②f(x2)在$[1,\;\sqrt{3}]$上具有性质P;
③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
④任意x1,x2,x3,x4∈[1,3],有$f(\frac{{{x_1}+{x_2}+{x_3}+{x_4}}}{4})≤\frac{1}{4}[f({x_1})+f({x_2})+f({x_3})+f({x_4})]$.
其中真命题的序号是(  )
A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图中的程序框图所描述的算法称为欧几里得辗转相除法.若输入m=459,n=357,则输出m=(  )
A.51B.17C.9D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.记集合T={0,1,2,3,4,5,6,7,8,9},$M=\{\frac{a_1}{10}+\frac{a_2}{{{{10}^2}}}+\frac{a_3}{{{{10}^3}}}+\frac{a_4}{{{{10}^4}}}|{a_i}∈T,i=1,2,3,4\}$,将M中的元素按从大到小排列,则第2012个数是(  )
A.$\frac{5}{10}+\frac{5}{{{{10}^2}}}+\frac{7}{{{{10}^3}}}+\frac{3}{{{{10}^4}}}$B.$\frac{5}{10}+\frac{5}{{{{10}^2}}}+\frac{7}{{{{10}^3}}}+\frac{2}{{{{10}^4}}}$
C.$\frac{7}{10}+\frac{9}{{{{10}^2}}}+\frac{8}{{{{10}^3}}}+\frac{8}{{{{10}^4}}}$D.$\frac{7}{10}+\frac{9}{{{{10}^2}}}+\frac{9}{{{{10}^3}}}+\frac{1}{{{{10}^4}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了测量河对岸两个建筑物C、D之间的距离,在河岸边取点A、B,∠BAC=45°,∠DAC=75°,∠ABD=30°,∠DBC=45°,AB=$\sqrt{3}$千米,A、B、C、D在同一个平面内,试求C、D之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,△ABC是直角三角形,∠C为直角,D是斜边AB上一点,以BD为直径的圆O与AC相切于点E,与BC相交于点F.
(1)求证:BE2=BC•BD;
(2)若DE=6,CF=4,求AE的长.

查看答案和解析>>

同步练习册答案