精英家教网 > 高中数学 > 题目详情
19.把座位编小为1、2、3、4、5的五张电影票全部分给甲、乙、内、丁四个人
(1)恰有一人没有分到电影票的分法有多少种:
(2)每人至少一张,且分得的两张票必须是连号,共有多少种不同的分法;
(3)甲、乙各分得一张电影票.且甲所得电影票的编号总大于乙所得电影票的编号,多少种不同的分法./

分析 (1)从甲、乙、内、丁4人选1人没有分到电影票,则5张电影票分给3人,分组后再分配给3人,问题得以解决;
(2)先求出2张连号的种数,再选一人得到这两张,其他的任意,问题得以解决.
(3)从5张电影票中选2张分给甲乙,剩下的3张电影票分给丙、丁两人,根据分步计数原理可得.

解答 解:(1)先从甲、乙、内、丁4人选1人没有分到电影票,则5张电影票分给3人,
则5张电影票分为(3,1,1)和(2,2,1)两组,分组后再分配给3人,
故有C41(C53+$\frac{{C}_{5}^{2}{•C}_{3}^{2}}{{A}_{2}^{2}}$)•A33=600种,
(2)两张票必须是连号的有(1,2),(2,3),(3,4),(4,5)共4种情况,
每人至少一张,先选1人得到连号的电影票,其他人任意选,故有C41C41A33=96种,
(3)由于甲所得电影票的编号总大于乙所得电影票的编号,
从5张电影票中选2张分给甲乙有C52=10种,剩下的3张电影票分给丙、丁两人,有23=8种,
故共有10×8=80种.

点评 本题考查了排列、组合及简单的计数问题,根据特殊元素优先安排的原则,掌握分步计数原理,此题是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知f(x)=(x-2)ex+ax2+x,a∈R.
(1)当$a=-\frac{1}{2}$时,求f(x)的单调区间;
(2)证明:当a∈[-2,0]时,f(x)<f′(x)总成立(f′(x)是f(x)的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若方程($\frac{6}{5}$)x=$\frac{1+a}{1-a}$有负数解,求a的取值范围(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=$\sqrt{3-2x-{x}^{2}}$的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式|2x-1|>x+2的解集是(  )
A.(-$\frac{1}{3}$,3)B.(-∞,-$\frac{1}{3}}$)∪(3,+∞)C.(-∞,-3)∪(${\frac{1}{3}$,+∞)D.(-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.观察下列不等式:
$\frac{{1}^{2}}{1}$=1,
$\frac{{1}^{2}+{2}^{2}}{1+2}$=$\frac{5}{3}$,
$\frac{{1}^{2}+{2}^{2}+{3}^{2}}{1+2+3}$=$\frac{7}{3}$,
$\frac{{1}^{2}+{2}^{2}+{3}^{2}+{4}^{2}}{1+2+3+4}$=3
,$\frac{{1}^{2}+{2}^{2}+{3}^{2}+{4}^{2}+5^{2}}{1+2+3+4+5}$=$\frac{11}{3}$,
…,
依此规律,第n个等式为$\frac{{1}^{2}{+2}^{2}{+3}^{2}+…{+n}^{2}}{1+2+3+…+n}$=$\frac{2n+1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设非零向量$\overrightarrow m$,$\overrightarrow n$,θ=<$\overrightarrow m,\overrightarrow n>$,规定:$\overrightarrow m$?$\overrightarrow n$=|$\overrightarrow m$||$\overrightarrow n$|sinθ,点M,N分别是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的上顶点和右顶点,且$\overrightarrow{OM}$?$\overrightarrow{ON}$=$\sqrt{3}$,离心率e=$\frac{{\sqrt{6}}}{3}$.
(1)求椭圆C的方程;
(2)设椭圆C与直线y=kx+m交于不同两点P,Q,又点A(0,-1),当|AP|=|AQ|时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线2mx-y-8m-3=0和圆(x-3)2+(y+6)2=25相交于A,B两点,当弦AB最短时,m的值为(  )
A.-$\frac{1}{6}$B.-6C.6D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(a+1)x-lnx(a∈R).
(Ⅰ)若函数f(x)在点P(1,f(1))处的切线与直线y=2x+1垂直,求实数a的值;
(Ⅱ)若函数f(x)在x∈(0,e]上的最小值为3,求实数a的值;
(Ⅲ)当x∈(0,e]时,证明:e2x2-xlnx>lnx+$\frac{5}{2}$x.

查看答案和解析>>

同步练习册答案