分析 由题意可得x<0,运用指数函数的单调性和值域,可得0<$\frac{1+a}{1-a}$<1,再由分式不等式的解法,即可得到所求a的范围.
解答 解:方程($\frac{6}{5}$)x=$\frac{1+a}{1-a}$有负数解,
可得x<0,即有0<($\frac{6}{5}$)x<1,
即0<$\frac{1+a}{1-a}$<1,
由$\frac{1+a}{1-a}$>0,可得-1<a<1;
由$\frac{1+a}{1-a}$<1,即$\frac{2a}{1-a}$<0,
可得a>1或a<0,
综上可得,a的范围是-1<a<0.
故答案为:(-1,0).
点评 本题考查方程的根的存在性问题的解法,注意运用指数函数的单调性和值域,考查分式不等式的解法,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 经济损失不超过4000元 | 经济损失超过4000元 | 合计 | |
| 捐款超过500元 | a=30 | b | |
| 捐款不超过500元 | c | d=6 | |
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 男 | 女 | 合计 | |
| 正常 | 442 | 514 | 956 |
| 色盲 | 38 | 6 | 44 |
| 合计 | 480 | 520 | 1000 |
| A. | 99.9%的把握认为色盲与性别有关 | B. | 99%的把握认为色盲与性别有关 | ||
| C. | 95%的把握认为色盲与性别有关 | D. | 90%的把握认为色盲与性别有关 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 计划要二胎 | 不计划要二胎 | 合计 | |
| 30岁以下 | |||
| 不低于30岁 | |||
| 合计 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 |
| k0 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com