精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面为菱形 且∠ABC=120°,PA⊥底面ABCD,AB=2,PA=

(1)求证:平面PBD⊥平面PAC;

(2)求三棱锥P--BDC的体积。

(3)在线段PC上是否存在一点E,使PC⊥平面EBD成立.如果存在,求出EC的长;如果不存在,请说明理由。

【答案】(1)见解析;(2)1;(3)

【解析】试题分析:

(1)要证面面垂直,一般先证线面垂直,也即要证线线垂直,由菱形可得,又由平面,从而可得直线与平面垂直,从而得证面面垂直;

(2)三棱锥的底面是,高为,由体积公式可得体积;

(3)假设存在,由线面垂直可得线线垂直,设,则,在中由相似三角形可求得长,反之只要有,就可得平面

试题解析:

(1) 略证:通过证BD⊥AC,BD⊥PA,得出BD⊥平面PAC,又BD在平面PBD内,所以平面PBD⊥平面PAD

(2)

(3)假设存在,设,则 ,Δ ∽ΔCPA , .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,其中a∈R.

(I)当a=1时,求曲线y=f(x)在原点处的切线方程;

(II)求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且过点.若点在椭圆上,则点称为点的一个“椭点”.

(1)求椭圆的标准方程;

(2)若直线 与椭圆相交于 两点,且 两点的“椭点”分别为 ,以为直径的圆经过坐标原点,试求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各2张,让孩子从盒子里任取3张卡片,按卡片上最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字

(1)求取出的3张卡片上的数字互不相同的概率;

(2)求随机变量x的分布列;

(3)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为(2,2)函数g(x)f(x1)f(32x)

(1)求函数g(x)的定义域

(2)f(x)是奇函数且在定义域上单调递减求不等式g(x)0的解集

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)|2x1||x4|.

(1)解不等式f(x)>2

(2)若函数f(x)≥m恒成立,m的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据以往的经验,某工程施工期间的降水量(单位:)对工期的影响如下表:

降水量





工期延误天数

0

2

6

10

历年气象资料表明,该工程施工期间降水量小于300700900的概率分别为0.30.70.9,求:

1)工期延误天数的均值与方差;

2)在降水量至少是300的条件下,工期延误不超过6天的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形几何学是数学家伯努瓦·曼德尔布罗在世纪年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图所示的分形规律可得如图乙所示的一个树形图:

若记图乙中第行白圈的个数为,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5名男生4名女生站成一排,求满足下列条件的排法:

(1)女生都不相邻有多少种排法?

(2)男生甲、乙、丙排序一定(只考虑位置的前后顺序),有多少种排法?

(3)男甲不在首位,男乙不在末位,有多少种排法?

查看答案和解析>>

同步练习册答案