精英家教网 > 高中数学 > 题目详情
11.函数f(x)=|2-x|的单调递增区间是[2,+∞),单调递减区间是(-∞,2].

分析 去掉绝对值符号,得到分段函数,然后求出单调区间即可.

解答 解:函数f(x)=|2-x|=$\left\{\begin{array}{l}x-2,x≥2\\ 2-x,x<2\end{array}\right.$,
所以函数的单调递增区间是:[2,+∞),单调递减区间是:(-∞,2].
故答案为:[2,+∞);(-∞,2].

点评 本题考查复合函数的单调性,分段函数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.当x∈[-5,5]时,函数f(x)=|x5-5x|的最大值为3100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在数列{an}中,前n项和为Sn,an=2n-10,Sn取最小值时,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数y=$\frac{3x-2}{x+1}$,x∈[0,2]的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.己知a=$\sqrt{5}$,b=$\root{3}{11}$,c=$\root{6}{123}$,比较a,b,c的大小为a>c>b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{a{x}^{2}+bx}$,其中a,b是实常数,且a<0,b>0
(1)求函数f(x)的定义域Df和值域Cf
(2)设点集{(x,y)|x∈Df,y∈Cf}构成正方形区域,求a,b需要满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列判断:
①如果一个函数的定义域关于坐标原点对称,那么这个函数为偶函数;
②对于定义域为实数集R的任何奇函数f(x)都有f(x)•f(-x)≤0;
③解析式中含自变量的偶次幂而不含常数项的函数必是偶函数;
④既是奇函数又是偶函数的函数存在且唯一.
其中正确的序号为(  )
A.②③④B.①③C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.f(x)=-2x2+4x-3的增区间为(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知|$\overrightarrow{a}$|=3,$\overrightarrow{b}$=(1,2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\overrightarrow{a}$=($\frac{6\sqrt{5}}{5}$,-$\frac{3\sqrt{5}}{5}$)或(-$\frac{6\sqrt{5}}{5}$,$\frac{3\sqrt{5}}{5}$).

查看答案和解析>>

同步练习册答案