精英家教网 > 高中数学 > 题目详情

【题目】设f(x)是定义在R上的奇函数,当x>0时,f′(x)sinx+f(x)cosx>0且f( )=1,则f(x)sinx≤1的整数解的集合为

【答案】{﹣1,0,1}
【解析】解:设g(x)=f(x)sinx,则g′(x)=f′(x)sinx+f(x)cosx, ∵当x>0时,f′(x)sinx+f(x)cosx>0
∴当x>0时,g′(x)>0,
∴当x>0时,g(x)单调递增,
∵f(x)是定义在R上的奇函数,
∴g(x)是偶函数,
∵f( )=1,∴g( )=1,
∵f(x)sinx≤1,
∴|x|≤
∴f(x)sinx≤1的整数解的集合为{﹣1,0,1}.
所以答案是:{﹣1,0,1}.
【考点精析】本题主要考查了函数奇偶性的性质的相关知识点,需要掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=( x
(1)求函数f(x)的解析式;
(2)在所给坐标系中画出函数f(x)的图象,并根据图象写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算
(1)已知f(x)=(x2+2x)ex , 求f′(﹣1);
(2)∫ cos2 dx.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的一元二次方程x2+ax﹣ +1=0.
(1)若a是从1,2,3这三个数中任取的一个数,b是从0,1,2这三个数中任取的一个数,求上述方程中有实根的概率;
(2)若a是从区间[0,3]中任取的一个数,b是从区间[0,2]中任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学举行了一次“环保只知识竞赛”,全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为 分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表(如图所示),解决下列问题.

(1)求出的值;

(2)在选取的样本中,从竞赛成绩是 分以上(含 分)的同学中随机抽取 名同学到广场参加环保只是的志愿宣传活动.

1)求所抽取的 名同学中至少有 名同学来自第 组的概率;

2)求所抽取的 名同学来自同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体中, 平面 是正方形, 为直角梯形, 的腰长为的等腰直角三角形.

(Ⅰ)求证:

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3x+c有两个不同零点,且有一个零点恰为f(x)的极大值点,则c的值为(
A.0
B.2
C.﹣2
D.﹣2或2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中常数.

(1)若上单调递增,求的取值范围;

(2)令,将函数的图象向左平移个单位,再向上平移1个单位,得到函数的图象.区间满足:上至少含有30个零点.在所有满足上述条件的中,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面.

(1)求证: 平面

(2)若为线段的中点,且过三点的平面与线段交于点,确定点的位置,说明理由;并求三棱锥的高.

查看答案和解析>>

同步练习册答案