精英家教网 > 高中数学 > 题目详情
4.设抛物线C:x2=2py(p>0)的焦点为F,准线为l,点A在抛物线上,B,D是准线上关于y轴对称的两点,若:|FA|=|FB|,BF⊥FD,且△ABD的面积为4$\sqrt{2}$,则p的值是(  )
A.2B.1C.4D.6

分析 求出圆F的半径|FA|=$\sqrt{2}$p,A到l的距离,利用△ABD的面积为4$\sqrt{2}$,求出p的值.

解答 解:由已知可得△BFD为等腰直角三角形,|BD|=2p,
圆F的半径|FA|=$\sqrt{2}$p.
由抛物线定义可知A到l的距离d=|FA|=$\sqrt{2}$p.
因为△ABD的面积为4$\sqrt{2}$,所以$\frac{1}{2}$|BD|•d=4$\sqrt{2}$,即$\frac{1}{2}$•2p•$\sqrt{2}$p=4$\sqrt{2}$,
解得p=-2(舍去),p=2.
故选:A.

点评 本题考查抛物线的定义,考查三角形面积的计算,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知抛物线x=ay2(a>0)的焦点与双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1的右焦点重合,则a=(  )
A.4B.8C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等比数列{an}中,若有an+an+1=3•($\frac{1}{2}$)n,则a5=(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{1}{16}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图ABCD是平行四边形,已知AB=2BC=4,BD=2$\sqrt{3}$,BE=CE,平面BCE⊥平面ABCD.
(Ⅰ)求证:BD⊥CE;
(Ⅱ)若BE=CE=$\sqrt{10}$,求三棱锥B-ADE的体积VB-ADE

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,抛物线x2=4$\sqrt{6}$y的焦点B是双曲线虚轴上的一个顶点,线段BF与双曲线C的右支交于点A,若$\overrightarrow{BA}$=2$\overrightarrow{AF}$,则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{6}$=1B.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1C.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一个透明的球形装饰品内放置了两个公共底面的圆锥如图,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球面面积的$\frac{3}{16}$,则较大圆锥与较小圆锥的体积之比为3:1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在直角梯形AA1B1B中,∠A1AB=90°,A1B1∥AB,AB=AA1=2A1B1=2.直角梯形AA1C1C通过直角梯形AA1B1B以直线AA1为轴旋转得到,且使得平面AA1C1C⊥平面AA1B1B.M为线段BC的中点,P为线段BB1上的动点.
(Ⅰ)求证:A1C1⊥AP;
(Ⅱ)当点P是线段BB1中点时,求二面角P-AM-B的余弦值;
(Ⅲ)是否存在点P,使得直线A1C∥平面AMP?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆C1:$\frac{{x}^{2}}{2}$+y2=1的右焦点为F,动圆过点F且与直线x+1=0相切,M(3,0),设动圆圆心的轨迹为C2
(1)求C2的方程;
(2)过F任作一条斜率为k1的直线l,l与C2交于A,B两点,直线MA交C2于另一点C,直线MB交C2于另一点D,若直线CD的斜率为k2,问,$\frac{{k}_{1}}{{k}_{2}}$是否为定值?若是,求出这个定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知关于x的方程x2+2alog2(x2+2)+a2-2=0有唯一解,则实数a的值为$\sqrt{3}-1$.

查看答案和解析>>

同步练习册答案