分析 (I)根据勾股定理的逆定理可证BD⊥BC,由面面垂直的性质可得BD⊥平面EBC,故BD⊥CE;
(II)取BC中点F,连接EF,DF,AF.则EF⊥平面ABCD,利用勾股定理求出EF,AF,DF,AE,DE,利用VE-ABD,计算三棱锥B-ADE的体积VB-ADE.
解答
(I)证明:∵四边形ABCD是平行四边形,
∴CD=AB=4,∵BC=2,BD=2$\sqrt{3}$,
∴BD2+BC2=CD2,∴BD⊥BC,
又平面BCE⊥平面ABCD,平面BCE∩平面ABCD=BC,BD?平面ABCD,
∴BD⊥平面BCE,∵CE?平面BCE,
∴BD⊥CE.
(II)解:取BC的中点F,连接EF,DF,AF.
∵EB=EC,
∴EF⊥BC,∵平面EBC⊥平面ABCD,平面EBC∩平面ABCD=BC,
∴EF⊥平面ABCD.
∵BE=CE=$\sqrt{10}$,BC=2,
∴EF=$\sqrt{B{E}^{2}-B{F}^{2}}$=3,DF=$\sqrt{B{D}^{2}+B{F}^{2}}$=$\sqrt{13}$,AF=$\sqrt{21}$,
∴DE=$\sqrt{E{F}^{2}+D{F}^{2}}$=$\sqrt{22}$,AE=$\sqrt{A{F}^{2}+E{F}^{2}}$=$\sqrt{30}$.
∴VB-ADE=VE-ABD=$\frac{1}{3}×\frac{1}{2}×2×2\sqrt{3}×3$=2$\sqrt{3}$.
点评 本题考查了面面垂直的性质,棱锥的体积计算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{21}}{3}$ | B. | $\frac{\sqrt{21}}{3}$ | C. | $\sqrt{26}$ | D. | 2$\sqrt{26}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{\sqrt{10}}{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{π}^{2}}{9}$ | B. | $\frac{{π}^{2}}{18}$ | C. | 3π2 | D. | 4π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com