| A. | $\frac{2\sqrt{21}}{3}$ | B. | $\frac{\sqrt{21}}{3}$ | C. | $\sqrt{26}$ | D. | 2$\sqrt{26}$ |
分析 由于平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-1,利用向量的夹角公式可得<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{2π}{3}$.
由于$<\overrightarrow{a}-\overrightarrow{c}$,$\overrightarrow{b}-\overrightarrow{c}$>=$\frac{π}{3}$,可得点C在△OAB的外接圆的弦AB所对的优弧上,因此可得|$\overrightarrow{c}$|的最大值为△OAB的外接圆的直径.
解答
解设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$.
平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-1,
cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{-1}{2×1}$=-$\frac{1}{2}$,
<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{2π}{3}$.
由$<\overrightarrow{a}-\overrightarrow{c}$,$\overrightarrow{b}-\overrightarrow{c}$>=$\frac{π}{3}$,
可得点C在△OAB的外接圆的弦AB所对的优弧上,如图所示.
因此|$\overrightarrow{c}$|的最大值为△OAB的外接圆的直径.
由|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}-2\overrightarrow{a}•\overrightarrow{b}}$=$\sqrt{4+1-2×(-1)}$=$\sqrt{7}$.
由正弦定理可得:△OAB的外接圆的直径2R=$\frac{|\overrightarrow{a}-\overrightarrow{b}|}{sin\frac{2π}{3}}$=$\frac{\sqrt{7}}{\frac{\sqrt{3}}{2}}$=$\frac{2\sqrt{21}}{3}$.
故选:A.
点评 本题考查了向量的夹角公式、三角形法则、数形结合的思想方法、正弦定理等基础知识与基本技能方法,考查了推理能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f′(a)<0,f′(b)<0 | B. | f′(a)>0,f′(b)>0 | C. | f′(a)<0,f′(b)>0 | D. | f′(a)>0,f′(b)<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (∁IM)∩(∁IN) | B. | (∁IM)∪(∁IN) | C. | M∪N | D. | M∩(∁IN) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{16}$ | D. | $\frac{1}{32}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com