精英家教网 > 高中数学 > 题目详情
5.已知数列{an}的前n项和为Sn,且满足条件an+Sn=n2+3n,数列{bn}满足条件bn=$\sqrt{1+\frac{1}{{{a}_{n}}^{2}}+\frac{1}{{{a}_{n+1}}^{2}}}$,数列{bn}的前n项和为Tn,M为正整数.
(1)求数列{an}的通项公式an
(2)若数列{bn}的前2015项的和T2015≥M,求M的最大值.

分析 (1)由an+Sn=n2+3n,n=1时,解得a1=2.n≥2时,可得:2an-an-1=2n+2,变形为:an-2n=$\frac{1}{2}[{a}_{n-1}-2(n-1)]$,即可得出an
(2)bn=$\sqrt{1+\frac{1}{4{n}^{2}}+\frac{1}{4(n+1)^{2}}}$=$\sqrt{1+\frac{1}{n(n+1)}+\frac{1}{4{n}^{2}(n+1)^{2}}}$<1+$\frac{1}{2n(n+1)}$=1+$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$.可得1<bn<1+$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$.即可得出.

解答 解:(1)∵an+Sn=n2+3n,∴n=1时,2a1=4,解得a1=2.
n≥2时,an-1+Sn-1=(n-1)2+3(n-1),可得:2an-an-1=2n+2,
变形为:an-2n=$\frac{1}{2}[{a}_{n-1}-2(n-1)]$,
∵a1=2,∴a2=4,以此类推可得:an=2n.(n=1时也成立).
(2)bn=$\sqrt{1+\frac{1}{{{a}_{n}}^{2}}+\frac{1}{{{a}_{n+1}}^{2}}}$=$\sqrt{1+\frac{1}{4{n}^{2}}+\frac{1}{4(n+1)^{2}}}$=$\sqrt{1+\frac{2{n}^{2}+2n+1}{4{n}^{2}(n+1)^{2}}}$=$\sqrt{1+\frac{1}{n(n+1)}+\frac{1}{4{n}^{2}(n+1)^{2}}}$<1+$\frac{1}{2n(n+1)}$=1+$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$.
∴1<bn<1+$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$.
∴数列{bn}的前n项和满足:n<Tn<n+$\frac{1}{2}(1-\frac{1}{n+1})$.
∴2015<T2015<2015+$\frac{1}{2}(1-\frac{1}{2016})$,
∴满足T2015≥M的M的最大值为2015.

点评 本题考查了数列的通项公式及其前n项和、“放缩法”、数列的单调性、不等式的解法、递推关系,考查了分类讨论方法、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的第一项a1=5且Sn-1=an(n≥2,n∈N*).
(1)求a2,a3,a4,并由此猜想an的表达式;
(2)用数学归纳法证明{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设有穷数列a0,a1,a2,…,am的各项均为整数,若对每一个k∈{1,2,3,…,m},均有|ak-ak-1|=k2,则称数列{an}为“m阶优数列”.
(1)判断数列1,2,-2,7,-9与数列1,2,6,10,14是否是“4阶优数列”,并求以1为首项的所有“4阶优数列”的个数;
(2)请写出一个首项和末项都是2015的“8阶优数列”;
(3)对任意两个整数s,t,是否存在一个“r阶优数列”,其首项为s且末项为t.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若平面区域$\left\{\begin{array}{l}{0≤x≤2}\\{-2≤y≤0}\\{y≥kx+2}\end{array}\right.$是一个梯形,则实数k的取值范围是(  )
A.(-2,-1)B.(-∞,-1)C.(-2,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-1,$<\overrightarrow{a}-\overrightarrow{c}$,$\overrightarrow{b}-\overrightarrow{c}$>=$\frac{π}{3}$,则|$\overrightarrow{c}$|的最大值为(  )
A.$\frac{2\sqrt{21}}{3}$B.$\frac{\sqrt{21}}{3}$C.$\sqrt{26}$D.2$\sqrt{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知y=f(x)为偶函数,当x≥0时,f(x)=-x2+2x,则满足f(f(a))=$\frac{1}{2}$的实数a的个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线bx+ay-ab=0(ab≠0)与圆x2+y2=1有公共点的充要条件是(  )
A.a2+b2≤1B.a2+b2≥1C.$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≤1D.$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.己知命题p:?x>-2,x2>4,命题q:?x∈R,cosx=ex,则下列命题中为假命题的是(  )
A.p∨qB.p∧qC.¬p∧qD.¬p∨¬q

查看答案和解析>>

同步练习册答案