精英家教网 > 高中数学 > 题目详情
11.已知x0是函数f(x)=ex-lnx的极值点,若a∈(0,x0),b∈(x0,+∞),则(  )
A.f′(a)<0,f′(b)<0B.f′(a)>0,f′(b)>0C.f′(a)<0,f′(b)>0D.f′(a)>0,f′(b)<0

分析 求出函数的定义域,函数的导数,判断函数的极值以及函数的单调性,推出结果即可.

解答 解:函数f(x)=ex-lnx的定义域为:x>0;
函数f′(x)=ex-$\frac{1}{x}$,令ex-$\frac{1}{x}$=0,即ex=$\frac{1}{x}$,
在平面直角坐标系中画出y=ex,y=$\frac{1}{x}$,的图象,如图:
x∈(0,x0)时,f′(x)=ex-$\frac{1}{x}$<0,函数函数f(x)=ex-lnx是减函数,x∈(x0,+∞),f′(x)=ex-$\frac{1}{x}$,>0,函数f(x)=ex-lnx是增函数,
可得f′(a)<0,f′(b)>0.
故选:C.

点评 本题考查函数的极值,单调性以及导数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列四种说法中,
①命题“存在x∈R,x2-x>0”的否定是“对于任意x∈R,x2-x<0”;
②命题“p且q为真”是“p或q为真”的必要不充分条件;
③已知幂函数f(x)=xα的图象经过点(2,$\frac{\sqrt{2}}{2}$),则f(4)的值等于$\frac{1}{2}$;
④已知向量$\overrightarrow{a}$=(3,-4),$\overrightarrow{b}$=(2,1),则向量 $\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的投影是$\frac{2}{5}$.
说法错误的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=2cos2x+cos(2x+$\frac{π}{3}$)-1在[0,π]内的一条对称轴方程是$x=\frac{5π}{12}$或$x=\frac{11π}{12}$,在[0,π]内单调递增区间是$[\frac{5π}{12},\frac{11π}{12}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,a≠b,c=$\sqrt{3}$,cos2A-cos2B=$\sqrt{3}$sinAcosA-$\sqrt{3}$sinBcosB,则∠C=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{5}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|2x-a|+|2x+1|,g(x)=2-|x-1|.
(I)解不等式:|g(x)|<1;
(Ⅱ)若存在x1∈R,x2∈R,使得f(x1)≤g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设有穷数列a0,a1,a2,…,am的各项均为整数,若对每一个k∈{1,2,3,…,m},均有|ak-ak-1|=k2,则称数列{an}为“m阶优数列”.
(1)判断数列1,2,-2,7,-9与数列1,2,6,10,14是否是“4阶优数列”,并求以1为首项的所有“4阶优数列”的个数;
(2)请写出一个首项和末项都是2015的“8阶优数列”;
(3)对任意两个整数s,t,是否存在一个“r阶优数列”,其首项为s且末项为t.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校高三数学备课组有六位理科老师和两位文科老师,在三天的雾霾停课期间,安排老师坐班答疑,要求每天都有一位文科老师和两位理科老师答疑,其中每位老师至少答疑一天,至多答疑两天,则不同的安排方法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-1,$<\overrightarrow{a}-\overrightarrow{c}$,$\overrightarrow{b}-\overrightarrow{c}$>=$\frac{π}{3}$,则|$\overrightarrow{c}$|的最大值为(  )
A.$\frac{2\sqrt{21}}{3}$B.$\frac{\sqrt{21}}{3}$C.$\sqrt{26}$D.2$\sqrt{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.任意实数a、b,定义a?b=$\left\{\begin{array}{l}{ab}&{ab≥0}\\{\frac{a}{b}}&{ab<0}\end{array}\right.$,设函数f(x)=(log2x)?x,数列{an}是公比大于0的等比数列,且a6=1.f(a1)+f(a2)+f(a3)+…+f(a9)+f(a10)=2a1,则a1=4.

查看答案和解析>>

同步练习册答案