精英家教网 > 高中数学 > 题目详情
3.某校高三数学备课组有六位理科老师和两位文科老师,在三天的雾霾停课期间,安排老师坐班答疑,要求每天都有一位文科老师和两位理科老师答疑,其中每位老师至少答疑一天,至多答疑两天,则不同的安排方法有多少种?

分析 根据题意,分2步进行分析:首先安排文科老师:先计算全部的安排方法数目,再排除其中不合题意的情况即可,其次安排理科老师:根据题意分析可得理科老师必须每人安排一天,由组合数公式计算可得其情况数目,进而由分步计数原理计算可得答案.

解答 解:根据题意,分2步进行分析:
首先安排文科老师:有23-2=6种安排方法,
其次安排理科老师:理科老师有6人,要求每天2人且每位老师至少答疑一天,至多答疑两天,
则必须每人安排一天,有$C_6^2C_4^2C_2^2$=90种安排方法;
则一共有6×90=540种安排方法,
答:不同的安排方法有540种.

点评 本题考查排列、组合的实际应用,注意理科老师有6人,要满足题意的话必须每人一天.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知抛物线y2=2x的焦点为F,准线为l,且l与x轴交于点E,A是抛物线上一点,AB⊥l,垂足为B,|AF|=$\frac{17}{2}$,则四边形ABEF的面积等于(  )
A.19B.38C.18D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线x=ay2(a>0)的焦点与双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1的右焦点重合,则a=(  )
A.4B.8C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知x0是函数f(x)=ex-lnx的极值点,若a∈(0,x0),b∈(x0,+∞),则(  )
A.f′(a)<0,f′(b)<0B.f′(a)>0,f′(b)>0C.f′(a)<0,f′(b)>0D.f′(a)>0,f′(b)<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.把函数y=sin($\frac{π}{4}$-2x)向右平移$\frac{π}{8}$个单位,然后把横坐标变为原来的2倍,则所得到的函数的解析式为y=cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知全集I={1,2,3,4,5,6,7},集合M={3,5,6},集合N={1,3,4},则集合{2,7}=(  )
A.(∁IM)∩(∁IN)B.(∁IM)∪(∁IN)C.M∪ND.M∩(∁IN)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等比数列{an}中,若有an+an+1=3•($\frac{1}{2}$)n,则a5=(  )
A.$\frac{1}{4}$B.$\frac{1}{8}$C.$\frac{1}{16}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图ABCD是平行四边形,已知AB=2BC=4,BD=2$\sqrt{3}$,BE=CE,平面BCE⊥平面ABCD.
(Ⅰ)求证:BD⊥CE;
(Ⅱ)若BE=CE=$\sqrt{10}$,求三棱锥B-ADE的体积VB-ADE

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆C1:$\frac{{x}^{2}}{2}$+y2=1的右焦点为F,动圆过点F且与直线x+1=0相切,M(3,0),设动圆圆心的轨迹为C2
(1)求C2的方程;
(2)过F任作一条斜率为k1的直线l,l与C2交于A,B两点,直线MA交C2于另一点C,直线MB交C2于另一点D,若直线CD的斜率为k2,问,$\frac{{k}_{1}}{{k}_{2}}$是否为定值?若是,求出这个定值,若不是,请说明理由.

查看答案和解析>>

同步练习册答案