精英家教网 > 高中数学 > 题目详情
13.已知抛物线y2=2x的焦点为F,准线为l,且l与x轴交于点E,A是抛物线上一点,AB⊥l,垂足为B,|AF|=$\frac{17}{2}$,则四边形ABEF的面积等于(  )
A.19B.38C.18D.36

分析 根据抛物线的定义,到焦点的距离等于到准线的距离,求出A的坐标,而四边形ABEF为直角梯形,直角梯形的面积可求.

解答 解:∵抛物线y2=2x的焦点为F,准线为l,
∴F($\frac{1}{2}$,1),准线l为x=-$\frac{1}{2}$,
∴|EF|=1,|AB|=|AF|,
设A(x0,y0),
∴|AB|=x0+$\frac{1}{2}$,
∵|AF|=$\frac{17}{2}$,
∴x0+$\frac{1}{2}$=$\frac{17}{2}$,
解得x0=8,
∴y02=2x0=16,
∴|y0|=4,
∴|BE|=|y0|=4,
∴S四边形ABEF=$\frac{1}{2}$(|EF|+|AB|)×|BE|=$\frac{1}{2}$(1+$\frac{17}{2}$)×4=19,
故选:A

点评 本题考查抛物线的定义、标准方程,以及简单性质的应用,判断四边形ABEF为直角梯形是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1,F2,抛物线E:y2=2px(p>0)的焦点与F2重合,A为曲线C与E的一个焦点,|AF1|=$\frac{7}{3}$,|AF2|=$\frac{5}{3}$,且∠AF2F1为锐角.
(1)求椭圆C和抛物线E的方程;
(2)若动点M在椭圆C上,动点N在直线l:y=2$\sqrt{3}$上,若OM⊥ON,探究原点O到直线MN的距离是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|x=3n-1,n∈Z},B={x|y=$\sqrt{25-{x^2}}$},则集合A∩B的元素个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列四种说法中,
①命题“存在x∈R,x2-x>0”的否定是“对于任意x∈R,x2-x<0”;
②命题“p且q为真”是“p或q为真”的必要不充分条件;
③已知幂函数f(x)=xα的图象经过点(2,$\frac{\sqrt{2}}{2}$),则f(4)的值等于$\frac{1}{2}$;
④已知向量$\overrightarrow{a}$=(3,-4),$\overrightarrow{b}$=(2,1),则向量 $\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的投影是$\frac{2}{5}$.
说法错误的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若α∈(0,π),且sinα+2cosα=2,则tan$\frac{α}{2}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{2x-y≤0}\\{x+y-6≤0}\end{array}\right.$,则z=4x-y的最大值为(  )
A.-6B.0C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\frac{\sqrt{lo{g}_{\frac{1}{2}}(x-1)}}{|x|-2}$的定义域为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=2cos2x+cos(2x+$\frac{π}{3}$)-1在[0,π]内的一条对称轴方程是$x=\frac{5π}{12}$或$x=\frac{11π}{12}$,在[0,π]内单调递增区间是$[\frac{5π}{12},\frac{11π}{12}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校高三数学备课组有六位理科老师和两位文科老师,在三天的雾霾停课期间,安排老师坐班答疑,要求每天都有一位文科老师和两位理科老师答疑,其中每位老师至少答疑一天,至多答疑两天,则不同的安排方法有多少种?

查看答案和解析>>

同步练习册答案