精英家教网 > 高中数学 > 题目详情
(2013•湖北)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是
3
3
寸.
(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)
分析:由题意得到盆中水面的半径,利用圆台的体积公式求出水的体积,用水的体积除以盆的上地面面积即可得到答案.
解答:解:如图,由题意可知,天池盆上底面半径为14寸,
下底面半径为6寸,高为18寸.
因为积水深9寸,所以水面半径为
1
2
(14+6)=10
寸.
则盆中水的体积为
1
3
π×9(62+102+6×10)=588π
(立方寸).
所以则平地降雨量等于
588π
π×142
=3
(寸).
故答案为3.
点评:本题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湖北)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]在R上为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖北)已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在正整数n,使得Sn≥2013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖北)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为
n(n+1)
2
=
1
2
n2+
1
2
n
.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:
三角形数N(n,3)=
1
2
n2+
1
2
n

正方形数N(n,4)=n2
五边形数N(n,5)=
3
2
n2-
1
2
n

六边形数N(n,6)=2n2-n,

可以推测N(n,k)的表达式,由此计算N(10,24)=
1000
1000

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖北)i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i,则z2=
-2+3i
-2+3i

查看答案和解析>>

同步练习册答案