精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,底面是直角梯形,⊥平面SAD,点的中点,且.

(1)求四棱锥的体积;
(2)求证:∥平面
(3)求直线和平面所成的角的正弦值.

(1)证得侧棱底面,体积
(2)证得
由四边形是平行四边形,得到,推出∥平面 。
(3)直线和平面所成的角的正弦值是

解析试题分析:(1)∵⊥底面,底面,底面
,
,是平面内的两条相交直线
∴侧棱底面            2分
在四棱锥中,侧棱底面,底面是直角梯形,
,∴
所以,四棱锥的体积是
(2)在四棱锥中,侧棱底面,底面是直角梯形,



∴四边形是平行四边形


∥平面             8分
(3)∵侧棱底面底面

垂直于是平面内的两条相交直线
,垂足是点
在平面内的射影,
是直线和平面所成的角
∵在中,


∴ 直线和平面所成的角的正弦值是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,侧棱底面,底面为矩形,上一点,

(I)若的中点,求证平面
(II)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面,四边形中,.
(Ⅰ)求证:平面平面
(Ⅱ)设
(ⅰ) 若直线与平面所成的角为,求线段的长;
(ⅱ) 在线段上是否存在一个点,使得点到点的距离都相等?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中, 平面.
(Ⅰ)求证:平面
(Ⅱ)求棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四棱锥,底面是边长为的正方形,⊥面,过点,连接
(Ⅰ)求证:
(Ⅱ)若面交侧棱于点,求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,多面体中,四边形是边长为的正方形,平面垂直于平面,且.
(Ⅰ)求证:
(Ⅱ)若分别为棱的中点,求证:∥平面
(Ⅲ)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱锥,平面平面,AB=AD=1,AB⊥AD,DB=DC,DB⊥DC

(1) 求证:AB⊥平面ADC;
(2) 求三棱锥的体积;
(3) 求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.

(Ⅰ)证明: BC1//平面A1CD;
(Ⅱ)设AA1= AC=CB=2,AB=2,求三棱锥C一A1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:是⊙的直径,垂直于⊙所在的平面,PA="AC," 是圆周上不同于的任意一点,(1) 求证:平面。(2) 求二面角 P-BC-A 的大小。

查看答案和解析>>

同步练习册答案