精英家教网 > 高中数学 > 题目详情
若实数x,y满足条件
0≤x+y≤4
(3x-y)(x-3y)≤0
,则z=x+2y的最大值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件
0≤x+y≤4
(3x-y)(x-3y)≤0
的可行域,再用角点法,求出目标函数的最大值.
解答: 解:依题意,画出可行域(如图示),

则对于目标函数z=x+2y,
x+y=4
3x-y=0
得B(1,3),
当直线经过B(1,3)时,
z取到最大值,zmax=7.
故答案为:7
点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列不等式中a的取值范围.
(1)2-
3
a2-1
<2+
3

(2)a<2
4-(
a
2
)2
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对命题p:1∈{1},命题q:1∉∅,下列说法正确的是(  )
A、p且q为假命题
B、p或q为假命题
C、非p为真命题
D、非q为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足约束条件
x-y+1≥0
x+y≥0
x≤3
则z=x+2y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论函数f(x)=x+
4
x
在(-∞,-2)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F为椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点,过F的直线与椭圆交于A,B两点.
(1)若点A为椭圆的上顶点,满足AF=2FB,且椭圆的右准线方程为x=3
3
,求椭圆的标准方程;
(2)若点A,B在椭圆的右准线上的射影分别为A1,B1(如图所示),求证:∠A1FB1为锐角.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,函数f(x)=
1
3
x3-
1
2
(2a+1)x2+(a2+a)x.
(Ⅰ)已知f′(x)是f(x)的导函数,且g(x)=
f′(x)
x
(x≠0)为奇函数,求a的值;
(Ⅱ)若函数f(x)在x=2处取得极小值,求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(x-
3
)-mcosx+
3
2
是奇函数.
(1)求函数f(x)的最小正周期以及对称轴方程;
(2)△ABC内角A、B、C的对边分别为a、b、c,若f(B)=
3-
3
2
,b=1,c=
3
,且a>b,试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是正方体的平面展开图,则在这个正方体中:
①BM与ED平行②CN与BE是异面直线
③CN与BM成60°角④DM与BN是异面直线
以上四个命题中,正确的命题序号是(  )
A、①②③B、②④
C、③④D、②③④

查看答案和解析>>

同步练习册答案