分析 根据分式的关系将条件进行转化,利用直线斜率的几何意义进行求解即可.
解答 解:$\frac{x}{x+y}$=$\frac{1}{1+\frac{y}{x}}$,
设k=$\frac{y}{x}$,则k的几何意义是区域内的点到原点的斜率,
作出不等式组对应的平面区域如图:![]()
则OB的斜率最小,此时k=0,
OC的斜率最大,由$\left\{\begin{array}{l}{y=2}\\{x+y-3=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即C(1,2),
则k=2,即k=$\frac{y}{x}∈[0,\;\;2]$,
∴$\frac{x}{x+y}=\frac{1}{{1+\frac{y}{x}}}∈[{\frac{1}{3},\;\;1}]$.
故答案为:[$\frac{1}{3}$,1]
点评 本题主要考查线性规划的应用,利用分式的意义转化为直线斜率的大小是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 11 | B. | 121 | C. | 242 | D. | 243 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 相关系数用来衡量x与y之间的线性相关程度 | |
| B. | |r|≤1,且|r|越接近0,线性相关程度越小 | |
| C. | 若r>0,则x与y是正相关 | |
| D. | |r|≥1,且|r|越接近1,线性相关程度越大 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{6}}}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com