精英家教网 > 高中数学 > 题目详情
7.已知实数x,y满足条件$\left\{{\begin{array}{l}{x+y-3≥0}\\{x-y-3≤0}\\{y≤2}\end{array}}\right.$,则$\frac{x}{x+y}$的取值范围是[$\frac{1}{3}$,1].

分析 根据分式的关系将条件进行转化,利用直线斜率的几何意义进行求解即可.

解答 解:$\frac{x}{x+y}$=$\frac{1}{1+\frac{y}{x}}$,
设k=$\frac{y}{x}$,则k的几何意义是区域内的点到原点的斜率,
作出不等式组对应的平面区域如图:
则OB的斜率最小,此时k=0,
OC的斜率最大,由$\left\{\begin{array}{l}{y=2}\\{x+y-3=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即C(1,2),
则k=2,即k=$\frac{y}{x}∈[0,\;\;2]$,
∴$\frac{x}{x+y}=\frac{1}{{1+\frac{y}{x}}}∈[{\frac{1}{3},\;\;1}]$.
故答案为:[$\frac{1}{3}$,1]

点评 本题主要考查线性规划的应用,利用分式的意义转化为直线斜率的大小是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知圆C:x2+y2=r2(r>0)经过点$(1,\sqrt{3})$.
(Ⅰ)求圆C的方程;
(Ⅱ)是否存在经过点(-1,1)的直线l,它与圆C相交于A、B两个不同点,且满足关系$\overrightarrow{OA}•\overrightarrow{OB}=0$(O为坐标原点),如果存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.递增的等比数列{an}中,若a1+a2+a3=13,a1•a2•a3=27,则前5项的和S5等于(  )
A.11B.121C.242D.243

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知单调递增的等差数列{an}中,a1+a2+a3=21,a1a2a3=231.
(1)求数列中a2的值;
(2)求数列的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知角α终边上一点P(-4,3),求$\frac{{cos(\frac{π}{2}+α)sin(-π-α)}}{{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}}$的值.
(2)已知sinα+cosα=$\frac{1}{5}$,0≤α≤π,求cos(2α-$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin(2x+φ),其中φ为实数且|φ|<π,若f(x)≤|f($\frac{π}{6}$)|对x∈R恒成立,且f($\frac{π}{2}$)>f(π),求
(1)求f(x)的单调递增区间.
(2)求f(x)的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列有关样本相关系数的说法不正确的是(  )
A.相关系数用来衡量x与y之间的线性相关程度
B.|r|≤1,且|r|越接近0,线性相关程度越小
C.若r>0,则x与y是正相关
D.|r|≥1,且|r|越接近1,线性相关程度越大

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={a-2,2a2+5a,10},且-3∈A,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系xOy中,点P为双曲线x2-2y2=1的左支上的一个动点,若点P到直线x+$\sqrt{2}$y-3=0的距离大于c恒成立,则实数c的最大值为(  )
A.1B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{6}$

查看答案和解析>>

同步练习册答案