【题目】已知函数
,
.
(1)证明:
,直线
都不是曲线
的切线;
(2)若
,使
成立,求实数
的取值范围.
【答案】(1)见解析;(2)
.
【解析】试题分析:(1)若直线
与曲线
相切,因直线
过定点
,若设切点
则可得
①,又
,
上单调递增,当且仅当
时,①成立,这与
矛盾,结论得证.
(2)
可转化为
,令
,
,
,分类讨论求
的最小值即可.
试题解析: (1)
的定义域为
,
,直线
过定点
,若直线
与曲线
相切于点
(
且
),则
,即
①,设
,
,则
,所以
在
上单调递增,又
,从而当且仅当
时,①成立,这与
矛盾.
所以,
,直线
都不是曲线
的切线;
(2)
即
,令
,
,
则
,使
成立
,
.
(i)当
时,
,
在
上为减函数,于是
,由
得
,满足
,所以
符合题意;
(ii)当
时,由
及
的单调性知
在
上为增函数,所以
,即
.
①若
,即
,则
,所以
在
为增函数,于是
,不合题意;
②若
,即
,则由
,
及
的单调性知存在唯一
,使
,且当
时,
,
为减函数;当
时,
,
为增函数;
所以
,由
得
,这与
矛盾,不合题意.
综上可知,
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
上的点到两个焦点的距离之和为
,短轴长为
,直线
与椭圆
交于
、
两点.
(1)求椭圆
的方程;
(2)若直线
与圆
相切,探究
是否为定值,如果是定值,请求出该定值;如果不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面内一动点
与两定点
和
连线的斜率之积等于
.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)设直线
:
(
)与轨迹
交于
、
两点,线段
的垂直平分线交
轴于点
,当
变化时,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过原点的动直线
与圆
相交于不同的两点
.
(1)求线段
的中点
的轨迹
的方程;
(2)是否存在实数
,使得直线
与曲线
只有一个交点?若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=sin(ωx+φ)(
)的最小正周期是π,若其图象向右平移
个单位后得到的函数为奇函数,则函数f(x)的图象( )
A.关于点
对称
B.关于点
对称
C.关于直线
对称
D.关于直线
对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司针对企业职工推出一款意外险产品,每年每人只要交少量保费,发生意外后可一次性获赔50万元.保险公司把职工从事的所有岗位共分为
、
、
三类工种,根据历史数据统计出三类工种的每赔付频率如下表(并以此估计赔付概率).
![]()
![]()
(Ⅰ)根据规定,该产品各工种保单的期望利润都不得超过保费的20%,试分别确定各类工种每张保单保费的上限;
(Ⅱ)某企业共有职工20000人,从事三类工种的人数分布比例如图,老板准备为全体职工每人购买一份此种保险,并以(Ⅰ)中计算的各类保险上限购买,试估计保险公司在这宗交易中的期望利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】春节来临,有农民工兄弟
、
、
、
四人各自通过互联网订购回家过年的火车票,若订票成功即可获得火车票,即他们获得火车票与否互不影响.若
、
、
、
获得火车票的概率分别是
,其中
,又
成等比数列,且
、
两人恰好有一人获得火车票的概率是
.
(1)求
的值;
(2)若
、
是一家人且两人都获得火车票才一起回家,否则两人都不回家.设
表示
、
、
、
能够回家过年的人数,求
的分布列和期望
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com