精英家教网 > 高中数学 > 题目详情
已知函数
(1)从区间内任取一个实数,设事件={函数在区间上有两个不同的零点},求事件发生的概率;
(2)若连续掷两次骰子(骰子六个面上标注的点数分别为)得到的点数分别为,记事件{恒成立},求事件发生的概率.
(1);(2)

试题分析:(1)根据函数在区间上有两个不同的零点,
得知有两个不同的正根
由不等式组 ,利用几何概型得解.
(2)应用基本不等式得到
由于恒成立,得到
讨论当的情况,
得到满足条件的基本事件个数,而基本事件总数为, 故应用古典概型概率的计算公式即得解.
试题解析:(1)函数在区间上有两个不同的零点,
,即有两个不同的正根
                                            4分
                                                         6分
(2)由已知:,所以,即

恒成立                             8分
时,适合;   
时,均适合;   
时,均适合
满足的基本事件个数为.                                    10分
而基本事件总数为,                                              11分
.                                                       12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

对某电子元件进行寿命追踪调查,所得情况如右频率分布直方图.

(1)图中纵坐标处刻度不清,根据图表所提供的数据还原
(2)根据图表的数据按分层抽样,抽取个元件,寿命为之间的应抽取几个;
(3)从(2)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个寿命为,一个寿命为”的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.
(1)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;
(2)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个口袋中装有大小相同的2个白球和3个黑球,从中摸出一个球,放回后再摸出一个球,则两次摸出的球恰好颜色不同的概率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

节日期间,高速公路车辆较多,某调查公司在一服务区从七座以下小型汽车中按进服务区的顺序,随机抽取第一辆汽车后,每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速()分成六段后得到如下图的频率分布直方图.
(1)请直接回答这种抽样方法是什么抽样方法?并估计出这40辆车速的中位数;
(2)设车速在的车辆为, ,为车速在上的频数),车速在的车辆为, ,为车速在上的频数),从车速在的车辆中任意抽取辆共有几种情况?请列举出所有的情况,并求抽取的辆车的车速都在上的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在30瓶饮料中,有3瓶已过了保质期,从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期的概率为________(结果用最简分数表示).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设随机变量X的分布列为P(X=i)=,(i=1,2,3,4).
(1)求P(X<3);
(2)求P
(3)求函数F(x)=P(X<x).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,下列概率中等于的是(  )
A.P(X=2)B.P(X≤2)
C.P(X=4)D.P(X≤4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是(  )
A.0.42B.0.28C.0.3D.0.7

查看答案和解析>>

同步练习册答案