精英家教网 > 高中数学 > 题目详情
节日期间,高速公路车辆较多,某调查公司在一服务区从七座以下小型汽车中按进服务区的顺序,随机抽取第一辆汽车后,每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速()分成六段后得到如下图的频率分布直方图.
(1)请直接回答这种抽样方法是什么抽样方法?并估计出这40辆车速的中位数;
(2)设车速在的车辆为, ,为车速在上的频数),车速在的车辆为, ,为车速在上的频数),从车速在的车辆中任意抽取辆共有几种情况?请列举出所有的情况,并求抽取的辆车的车速都在上的概率.
(1)系统抽样,;(2)

试题分析:(1)系统抽样的方法是每间隔一个相同的长度,抽取一个样本.所以本小题符合系统抽样的方法.通过直方图计算中位数,是指直方图中从左到右直方图的面积为二分之一这条分界线所对的值,通过运算可求得中位数的估算值.
(2)由于车速在的车辆频率为0.05,车速在的车辆的频率为0.1.所以可求出车速在这两段上的车辆数.再求出相应的概率即可.
(1)此调查公司在抽样中,用到的抽样方法是系统抽样.        2分                                                     
∵车速在区间上的频率分别为
∴车速在区间上的频率是,车速在区间上的频率是
∴中位数在区间内.                              2分
设中位数的估计值是

解之得
∴中位数的估计值为                                  6分        
(2)由(1)得.              8分
∴所以车速在的车辆中任意抽取辆的所有情况是:
,共有
种情况.                                             10分
车速都在上的辆车的情况有种.所以车速都在上的辆车的概率是.                                           12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)从区间内任取一个实数,设事件={函数在区间上有两个不同的零点},求事件发生的概率;
(2)若连续掷两次骰子(骰子六个面上标注的点数分别为)得到的点数分别为,记事件{恒成立},求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2)表示开始第4次发球时乙的得分,求的期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).
(1)求选出的3名同学是来自互不相同学院的概率;
(2)设为选出的3名同学中女同学的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某学校一位教师要去某地参加全国数学优质课比赛,已知他乘火车、轮船、汽车、飞机直接去的概率分别为0.3、0.1、0.2、0.4.
(1)求他乘火车或乘飞机去的概率;
(2)他不乘轮船去的概率;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若事件A和B是相互独立事件,且P(A·B)=0.48,P(A·B)=0.08,P(A)>P(B),则P(A)的值为(   )
A.0.5       B.0.6          C.0.8       D.0.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某单位有车牌尾号为2的汽车A和尾号为6的汽车B,两车分属于两个独立业务部门.对一段时间内两辆汽车的用车记录进行统计,在非限行日,A车日出车频率0.6,B车日出车频率0.5.该地区汽车限行规定如下:
车尾号
0和5
1和6
2和7
3和8
4和9
限行日
星期一
星期二
星期三
星期四
星期五
 
现将汽车日出车频率理解为日出车概率,且A,B两车出车相互独立.
(1)求该单位在星期一恰好出车一台的概率;
(2)设X表示该单位在星期一与星期二两天的出车台数之和,求X的分布列及其数学期望E(X).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列随机事件中的随机变量X服从超几何分布的是________.(填序号)
①将一枚硬币连抛3次,正面向上的次数记为X;
②从7男3女共10个学生干部中选出5个优秀学生干部,女生的人数记为X;
③某射手的射击命中率为0.8,现对目标射击1次,记命中的次数为X;
④盒中有4个白球和3个黑球,每次从中摸出1个球且不放回,X是第一次摸出黑球的次数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击.
(1)求该射手恰好命中一次的概率.
(2)求该射手的总得分X的分布列.

查看答案和解析>>

同步练习册答案