精英家教网 > 高中数学 > 题目详情
1.数列{an}的前n项和为Sn,满足Sn=nan+1,且a1=1,则Sn=n!.

分析 Sn=nan+1,且a1=1,可得Sn=n(Sn+1-Sn),即$\frac{{S}_{n+1}}{{S}_{n}}$=n+1,再利用“累乘求积”即可得出.

解答 解:∵Sn=nan+1,且a1=1,
∴Sn=n(Sn+1-Sn),
∴$\frac{{S}_{n+1}}{{S}_{n}}$=n+1,
∴Sn=$\frac{{S}_{n}}{{S}_{n-1}}$$•\frac{{S}_{n-1}}{{S}_{n-2}}$•…$•\frac{{S}_{3}}{{S}_{2}}$$•\frac{{S}_{2}}{{S}_{1}}$•S1
=n!.
当n=1时也成立,
∴Sn=n!.
故答案为:n!.

点评 本题考查了递推关系、“累乘求积”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知抛物线x2=2py(p>0)的焦点为F,点M在抛物线上且在第一象限内,MF=2p,若线段MF恰好被双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线平分,则双曲线的离心率是(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{2\sqrt{6}}{3}$C.$\sqrt{3}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知(x-1)n的展开式中奇数项的二项式系数之和是64,则它的展开式的中间项为(  )
A.-35x4B.35x3C.-35x4和35x3D.-35x3和35x4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.四棱锥P-ABCD的五个顶点都在一个球面上,底面ABC是矩形,其中AB=3,BC=4,又PA垂直平面ABCD,PA=5,则该球的表面积为50π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求证:sin[nπ+(-1)n•$\frac{π}{6}$]=cos[2nπ+(-1)n•$\frac{π}{3}$](n∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的首项a1=1,an+1=1-$\frac{1}{4{a}_{n}}$,其中n∈N,若bn=$\frac{2}{2{a}_{n}-1}$.
(1)求证:数列{bn}是等差数列;
(2)设cn+1-bn=cn-1,c1=1,求出{cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知集合A={x||x|≤1},B={x|x2-ax≤0},若A∩B=B.则实数a的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.平面直角坐标系xOy中,过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)右焦点的直线l:y=kx-k交C于A,B两点,P为AB的中点,当k=1时OP的斜率为$-\frac{1}{2}$.
(Ⅰ) 求C的方程;
(Ⅱ) x轴上是否存在点Q,使得k变化时总有∠AQO=∠BQO,若存在请求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x>0,y>0,x+2y=1,则$\frac{y}{x}+\frac{1}{y}$的最小值为4.

查看答案和解析>>

同步练习册答案